Description: The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010)
Ref | Expression | ||
---|---|---|---|
Hypothesis | isptfin.1 | ⊢ 𝑋 = ∪ 𝐴 | |
Assertion | isptfin | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ PtFin ↔ ∀ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦 } ∈ Fin ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isptfin.1 | ⊢ 𝑋 = ∪ 𝐴 | |
2 | unieq | ⊢ ( 𝑎 = 𝐴 → ∪ 𝑎 = ∪ 𝐴 ) | |
3 | 2 1 | eqtr4di | ⊢ ( 𝑎 = 𝐴 → ∪ 𝑎 = 𝑋 ) |
4 | rabeq | ⊢ ( 𝑎 = 𝐴 → { 𝑦 ∈ 𝑎 ∣ 𝑥 ∈ 𝑦 } = { 𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦 } ) | |
5 | 4 | eleq1d | ⊢ ( 𝑎 = 𝐴 → ( { 𝑦 ∈ 𝑎 ∣ 𝑥 ∈ 𝑦 } ∈ Fin ↔ { 𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦 } ∈ Fin ) ) |
6 | 3 5 | raleqbidv | ⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ ∪ 𝑎 { 𝑦 ∈ 𝑎 ∣ 𝑥 ∈ 𝑦 } ∈ Fin ↔ ∀ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦 } ∈ Fin ) ) |
7 | df-ptfin | ⊢ PtFin = { 𝑎 ∣ ∀ 𝑥 ∈ ∪ 𝑎 { 𝑦 ∈ 𝑎 ∣ 𝑥 ∈ 𝑦 } ∈ Fin } | |
8 | 6 7 | elab2g | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ PtFin ↔ ∀ 𝑥 ∈ 𝑋 { 𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦 } ∈ Fin ) ) |