Metamath Proof Explorer


Theorem isptfin

Description: The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Hypothesis isptfin.1 𝑋 = 𝐴
Assertion isptfin ( 𝐴𝐵 → ( 𝐴 ∈ PtFin ↔ ∀ 𝑥𝑋 { 𝑦𝐴𝑥𝑦 } ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 isptfin.1 𝑋 = 𝐴
2 unieq ( 𝑎 = 𝐴 𝑎 = 𝐴 )
3 2 1 eqtr4di ( 𝑎 = 𝐴 𝑎 = 𝑋 )
4 rabeq ( 𝑎 = 𝐴 → { 𝑦𝑎𝑥𝑦 } = { 𝑦𝐴𝑥𝑦 } )
5 4 eleq1d ( 𝑎 = 𝐴 → ( { 𝑦𝑎𝑥𝑦 } ∈ Fin ↔ { 𝑦𝐴𝑥𝑦 } ∈ Fin ) )
6 3 5 raleqbidv ( 𝑎 = 𝐴 → ( ∀ 𝑥 𝑎 { 𝑦𝑎𝑥𝑦 } ∈ Fin ↔ ∀ 𝑥𝑋 { 𝑦𝐴𝑥𝑦 } ∈ Fin ) )
7 df-ptfin PtFin = { 𝑎 ∣ ∀ 𝑥 𝑎 { 𝑦𝑎𝑥𝑦 } ∈ Fin }
8 6 7 elab2g ( 𝐴𝐵 → ( 𝐴 ∈ PtFin ↔ ∀ 𝑥𝑋 { 𝑦𝐴𝑥𝑦 } ∈ Fin ) )