Step |
Hyp |
Ref |
Expression |
1 |
|
islocfin.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
islocfin.2 |
⊢ 𝑌 = ∪ 𝐴 |
3 |
|
df-locfin |
⊢ LocFin = ( 𝑗 ∈ Top ↦ { 𝑦 ∣ ( ∪ 𝑗 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑛 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) |
4 |
3
|
mptrcl |
⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → 𝐽 ∈ Top ) |
5 |
|
eqimss2 |
⊢ ( 𝑋 = ∪ 𝑦 → ∪ 𝑦 ⊆ 𝑋 ) |
6 |
|
sspwuni |
⊢ ( 𝑦 ⊆ 𝒫 𝑋 ↔ ∪ 𝑦 ⊆ 𝑋 ) |
7 |
5 6
|
sylibr |
⊢ ( 𝑋 = ∪ 𝑦 → 𝑦 ⊆ 𝒫 𝑋 ) |
8 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝒫 𝑋 ↔ 𝑦 ⊆ 𝒫 𝑋 ) |
9 |
7 8
|
sylibr |
⊢ ( 𝑋 = ∪ 𝑦 → 𝑦 ∈ 𝒫 𝒫 𝑋 ) |
10 |
9
|
adantr |
⊢ ( ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) → 𝑦 ∈ 𝒫 𝒫 𝑋 ) |
11 |
10
|
abssi |
⊢ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ⊆ 𝒫 𝒫 𝑋 |
12 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
13 |
|
pwexg |
⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) |
14 |
|
pwexg |
⊢ ( 𝒫 𝑋 ∈ V → 𝒫 𝒫 𝑋 ∈ V ) |
15 |
12 13 14
|
3syl |
⊢ ( 𝐽 ∈ Top → 𝒫 𝒫 𝑋 ∈ V ) |
16 |
|
ssexg |
⊢ ( ( { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ⊆ 𝒫 𝒫 𝑋 ∧ 𝒫 𝒫 𝑋 ∈ V ) → { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ∈ V ) |
17 |
11 15 16
|
sylancr |
⊢ ( 𝐽 ∈ Top → { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ∈ V ) |
18 |
|
unieq |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) |
19 |
18 1
|
eqtr4di |
⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
20 |
19
|
eqeq1d |
⊢ ( 𝑗 = 𝐽 → ( ∪ 𝑗 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦 ) ) |
21 |
|
rexeq |
⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑛 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
22 |
19 21
|
raleqbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑛 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( ∪ 𝑗 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑛 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ↔ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
24 |
23
|
abbidv |
⊢ ( 𝑗 = 𝐽 → { 𝑦 ∣ ( ∪ 𝑗 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑛 ∈ 𝑗 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } = { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) |
25 |
24 3
|
fvmptg |
⊢ ( ( 𝐽 ∈ Top ∧ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ∈ V ) → ( LocFin ‘ 𝐽 ) = { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) |
26 |
17 25
|
mpdan |
⊢ ( 𝐽 ∈ Top → ( LocFin ‘ 𝐽 ) = { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) |
27 |
26
|
eleq2d |
⊢ ( 𝐽 ∈ Top → ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) ) |
28 |
|
elex |
⊢ ( 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } → 𝐴 ∈ V ) |
29 |
28
|
adantl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) → 𝐴 ∈ V ) |
30 |
|
simpr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) |
31 |
30 2
|
eqtrdi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝑋 = ∪ 𝐴 ) |
32 |
12
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ 𝐽 ) |
33 |
31 32
|
eqeltrrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → ∪ 𝐴 ∈ 𝐽 ) |
34 |
33
|
elexd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → ∪ 𝐴 ∈ V ) |
35 |
|
uniexb |
⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) |
36 |
34 35
|
sylibr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝐴 ∈ V ) |
37 |
36
|
adantrr |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) → 𝐴 ∈ V ) |
38 |
|
unieq |
⊢ ( 𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴 ) |
39 |
38 2
|
eqtr4di |
⊢ ( 𝑦 = 𝐴 → ∪ 𝑦 = 𝑌 ) |
40 |
39
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑋 = ∪ 𝑦 ↔ 𝑋 = 𝑌 ) ) |
41 |
|
rabeq |
⊢ ( 𝑦 = 𝐴 → { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } = { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ) |
42 |
41
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ↔ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
43 |
42
|
anbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
44 |
43
|
rexbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
45 |
44
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |
46 |
40 45
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
47 |
46
|
elabg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
48 |
29 37 47
|
pm5.21nd |
⊢ ( 𝐽 ∈ Top → ( 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = ∪ 𝑦 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
49 |
27 48
|
bitrd |
⊢ ( 𝐽 ∈ Top → ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
50 |
4 49
|
biadanii |
⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
51 |
|
3anass |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ↔ ( 𝐽 ∈ Top ∧ ( 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) ) |
52 |
50 51
|
bitr4i |
⊢ ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑛 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ { 𝑠 ∈ 𝐴 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) ) |