Metamath Proof Explorer


Theorem islocfin

Description: The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Hypotheses islocfin.1 𝑋 = 𝐽
islocfin.2 𝑌 = 𝐴
Assertion islocfin ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )

Proof

Step Hyp Ref Expression
1 islocfin.1 𝑋 = 𝐽
2 islocfin.2 𝑌 = 𝐴
3 df-locfin LocFin = ( 𝑗 ∈ Top ↦ { 𝑦 ∣ ( 𝑗 = 𝑦 ∧ ∀ 𝑥 𝑗𝑛𝑗 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } )
4 3 mptrcl ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) → 𝐽 ∈ Top )
5 eqimss2 ( 𝑋 = 𝑦 𝑦𝑋 )
6 sspwuni ( 𝑦 ⊆ 𝒫 𝑋 𝑦𝑋 )
7 5 6 sylibr ( 𝑋 = 𝑦𝑦 ⊆ 𝒫 𝑋 )
8 velpw ( 𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋 )
9 7 8 sylibr ( 𝑋 = 𝑦𝑦 ∈ 𝒫 𝒫 𝑋 )
10 9 adantr ( ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) → 𝑦 ∈ 𝒫 𝒫 𝑋 )
11 10 abssi { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } ⊆ 𝒫 𝒫 𝑋
12 1 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
13 pwexg ( 𝑋𝐽 → 𝒫 𝑋 ∈ V )
14 pwexg ( 𝒫 𝑋 ∈ V → 𝒫 𝒫 𝑋 ∈ V )
15 12 13 14 3syl ( 𝐽 ∈ Top → 𝒫 𝒫 𝑋 ∈ V )
16 ssexg ( ( { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } ⊆ 𝒫 𝒫 𝑋 ∧ 𝒫 𝒫 𝑋 ∈ V ) → { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } ∈ V )
17 11 15 16 sylancr ( 𝐽 ∈ Top → { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } ∈ V )
18 unieq ( 𝑗 = 𝐽 𝑗 = 𝐽 )
19 18 1 eqtr4di ( 𝑗 = 𝐽 𝑗 = 𝑋 )
20 19 eqeq1d ( 𝑗 = 𝐽 → ( 𝑗 = 𝑦𝑋 = 𝑦 ) )
21 rexeq ( 𝑗 = 𝐽 → ( ∃ 𝑛𝑗 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∃ 𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
22 19 21 raleqbidv ( 𝑗 = 𝐽 → ( ∀ 𝑥 𝑗𝑛𝑗 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
23 20 22 anbi12d ( 𝑗 = 𝐽 → ( ( 𝑗 = 𝑦 ∧ ∀ 𝑥 𝑗𝑛𝑗 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) ↔ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) ) )
24 23 abbidv ( 𝑗 = 𝐽 → { 𝑦 ∣ ( 𝑗 = 𝑦 ∧ ∀ 𝑥 𝑗𝑛𝑗 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } = { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } )
25 24 3 fvmptg ( ( 𝐽 ∈ Top ∧ { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } ∈ V ) → ( LocFin ‘ 𝐽 ) = { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } )
26 17 25 mpdan ( 𝐽 ∈ Top → ( LocFin ‘ 𝐽 ) = { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } )
27 26 eleq2d ( 𝐽 ∈ Top → ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) )
28 elex ( 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } → 𝐴 ∈ V )
29 28 adantl ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) → 𝐴 ∈ V )
30 simpr ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝑌 )
31 30 2 eqtrdi ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝑋 = 𝐴 )
32 12 adantr ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝑋𝐽 )
33 31 32 eqeltrrd ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝐴𝐽 )
34 33 elexd ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝐴 ∈ V )
35 uniexb ( 𝐴 ∈ V ↔ 𝐴 ∈ V )
36 34 35 sylibr ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ) → 𝐴 ∈ V )
37 36 adantrr ( ( 𝐽 ∈ Top ∧ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) ) → 𝐴 ∈ V )
38 unieq ( 𝑦 = 𝐴 𝑦 = 𝐴 )
39 38 2 eqtr4di ( 𝑦 = 𝐴 𝑦 = 𝑌 )
40 39 eqeq2d ( 𝑦 = 𝐴 → ( 𝑋 = 𝑦𝑋 = 𝑌 ) )
41 rabeq ( 𝑦 = 𝐴 → { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } = { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } )
42 41 eleq1d ( 𝑦 = 𝐴 → ( { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ↔ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) )
43 42 anbi2d ( 𝑦 = 𝐴 → ( ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
44 43 rexbidv ( 𝑦 = 𝐴 → ( ∃ 𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∃ 𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
45 44 ralbidv ( 𝑦 = 𝐴 → ( ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ↔ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )
46 40 45 anbi12d ( 𝑦 = 𝐴 → ( ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) ) )
47 46 elabg ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) ) )
48 29 37 47 pm5.21nd ( 𝐽 ∈ Top → ( 𝐴 ∈ { 𝑦 ∣ ( 𝑋 = 𝑦 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝑦 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) } ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) ) )
49 27 48 bitrd ( 𝐽 ∈ Top → ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) ) )
50 4 49 biadanii ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) ) )
51 3anass ( ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) ↔ ( 𝐽 ∈ Top ∧ ( 𝑋 = 𝑌 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) ) )
52 50 51 bitr4i ( 𝐴 ∈ ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀ 𝑥𝑋𝑛𝐽 ( 𝑥𝑛 ∧ { 𝑠𝐴 ∣ ( 𝑠𝑛 ) ≠ ∅ } ∈ Fin ) ) )