Metamath Proof Explorer


Theorem finptfin

Description: A finite cover is a point-finite cover. (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Assertion finptfin ( 𝐴 ∈ Fin → 𝐴 ∈ PtFin )

Proof

Step Hyp Ref Expression
1 rabfi ( 𝐴 ∈ Fin → { 𝑦𝐴𝑥𝑦 } ∈ Fin )
2 1 ralrimivw ( 𝐴 ∈ Fin → ∀ 𝑥 𝐴 { 𝑦𝐴𝑥𝑦 } ∈ Fin )
3 eqid 𝐴 = 𝐴
4 3 isptfin ( 𝐴 ∈ Fin → ( 𝐴 ∈ PtFin ↔ ∀ 𝑥 𝐴 { 𝑦𝐴𝑥𝑦 } ∈ Fin ) )
5 2 4 mpbird ( 𝐴 ∈ Fin → 𝐴 ∈ PtFin )