Metamath Proof Explorer


Theorem isptfin

Description: The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Hypothesis isptfin.1 X = A
Assertion isptfin A B A PtFin x X y A | x y Fin

Proof

Step Hyp Ref Expression
1 isptfin.1 X = A
2 unieq a = A a = A
3 2 1 eqtr4di a = A a = X
4 rabeq a = A y a | x y = y A | x y
5 4 eleq1d a = A y a | x y Fin y A | x y Fin
6 3 5 raleqbidv a = A x a y a | x y Fin x X y A | x y Fin
7 df-ptfin PtFin = a | x a y a | x y Fin
8 6 7 elab2g A B A PtFin x X y A | x y Fin