Metamath Proof Explorer


Definition df-ptfin

Description: Define "point-finite." (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Assertion df-ptfin PtFin = x | y x z x | y z Fin

Detailed syntax breakdown

Step Hyp Ref Expression
0 cptfin class PtFin
1 vx setvar x
2 vy setvar y
3 1 cv setvar x
4 3 cuni class x
5 vz setvar z
6 2 cv setvar y
7 5 cv setvar z
8 6 7 wcel wff y z
9 8 5 3 crab class z x | y z
10 cfn class Fin
11 9 10 wcel wff z x | y z Fin
12 11 2 4 wral wff y x z x | y z Fin
13 12 1 cab class x | y x z x | y z Fin
14 0 13 wceq wff PtFin = x | y x z x | y z Fin