Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | refbas.1 | |- X = U. A |
|
| refbas.2 | |- Y = U. B |
||
| Assertion | refbas | |- ( A Ref B -> Y = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refbas.1 | |- X = U. A |
|
| 2 | refbas.2 | |- Y = U. B |
|
| 3 | refrel | |- Rel Ref |
|
| 4 | 3 | brrelex1i | |- ( A Ref B -> A e. _V ) |
| 5 | 1 2 | isref | |- ( A e. _V -> ( A Ref B <-> ( Y = X /\ A. x e. A E. y e. B x C_ y ) ) ) |
| 6 | 5 | simprbda | |- ( ( A e. _V /\ A Ref B ) -> Y = X ) |
| 7 | 4 6 | mpancom | |- ( A Ref B -> Y = X ) |