Metamath Proof Explorer


Theorem cmpfiref

Description: Every open cover of a Compact space has a finite refinement. (Contributed by Thierry Arnoux, 1-Feb-2020)

Ref Expression
Hypothesis cmpfiref.x 𝑋 = 𝐽
Assertion cmpfiref ( ( 𝐽 ∈ Comp ∧ 𝑈𝐽𝑋 = 𝑈 ) → ∃ 𝑣 ∈ 𝒫 𝐽 ( 𝑣 ∈ Fin ∧ 𝑣 Ref 𝑈 ) )

Proof

Step Hyp Ref Expression
1 cmpfiref.x 𝑋 = 𝐽
2 cmpcref Comp = CovHasRef Fin
3 id ( 𝑣 ∈ Fin → 𝑣 ∈ Fin )
4 1 2 3 crefdf ( ( 𝐽 ∈ Comp ∧ 𝑈𝐽𝑋 = 𝑈 ) → ∃ 𝑣 ∈ 𝒫 𝐽 ( 𝑣 ∈ Fin ∧ 𝑣 Ref 𝑈 ) )