Description: Every open cover of a Compact space has a finite refinement. (Contributed by Thierry Arnoux, 1-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cmpfiref.x | |- X = U. J |
|
| Assertion | cmpfiref | |- ( ( J e. Comp /\ U C_ J /\ X = U. U ) -> E. v e. ~P J ( v e. Fin /\ v Ref U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmpfiref.x | |- X = U. J |
|
| 2 | cmpcref | |- Comp = CovHasRef Fin |
|
| 3 | id | |- ( v e. Fin -> v e. Fin ) |
|
| 4 | 1 2 3 | crefdf | |- ( ( J e. Comp /\ U C_ J /\ X = U. U ) -> E. v e. ~P J ( v e. Fin /\ v Ref U ) ) |