Metamath Proof Explorer


Theorem reximdai

Description: Deduction from Theorem 19.22 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999)

Ref Expression
Hypotheses reximdai.1 𝑥 𝜑
reximdai.2 ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
Assertion reximdai ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 reximdai.1 𝑥 𝜑
2 reximdai.2 ( 𝜑 → ( 𝑥𝐴 → ( 𝜓𝜒 ) ) )
3 1 2 ralrimi ( 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜒 ) )
4 rexim ( ∀ 𝑥𝐴 ( 𝜓𝜒 ) → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜒 ) )
5 3 4 syl ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜒 ) )