Description: Deduction from Theorem 19.22 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reximdai.1 | ⊢ Ⅎ 𝑥 𝜑 | |
reximdai.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) | ||
Assertion | reximdai | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdai.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | reximdai.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) | |
3 | 1 2 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ) |
4 | rexim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 𝜒 ) ) | |
5 | 3 4 | syl | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |