Metamath Proof Explorer


Theorem reximdai

Description: Deduction from Theorem 19.22 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999)

Ref Expression
Hypotheses reximdai.1
|- F/ x ph
reximdai.2
|- ( ph -> ( x e. A -> ( ps -> ch ) ) )
Assertion reximdai
|- ( ph -> ( E. x e. A ps -> E. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 reximdai.1
 |-  F/ x ph
2 reximdai.2
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
3 1 2 ralrimi
 |-  ( ph -> A. x e. A ( ps -> ch ) )
4 rexim
 |-  ( A. x e. A ( ps -> ch ) -> ( E. x e. A ps -> E. x e. A ch ) )
5 3 4 syl
 |-  ( ph -> ( E. x e. A ps -> E. x e. A ch ) )