Metamath Proof Explorer


Theorem rnfi

Description: The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Assertion rnfi AFinranAFin

Proof

Step Hyp Ref Expression
1 df-rn ranA=domA-1
2 cnvfi AFinA-1Fin
3 dmfi A-1FindomA-1Fin
4 2 3 syl AFindomA-1Fin
5 1 4 eqeltrid AFinranAFin