Metamath Proof Explorer


Theorem crefi

Description: The property that every open cover has an A refinement for the topological space J . (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Hypothesis crefi.x 𝑋 = 𝐽
Assertion crefi ( ( 𝐽 ∈ CovHasRef 𝐴𝐶𝐽𝑋 = 𝐶 ) → ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝐶 )

Proof

Step Hyp Ref Expression
1 crefi.x 𝑋 = 𝐽
2 simp1 ( ( 𝐽 ∈ CovHasRef 𝐴𝐶𝐽𝑋 = 𝐶 ) → 𝐽 ∈ CovHasRef 𝐴 )
3 simp2 ( ( 𝐽 ∈ CovHasRef 𝐴𝐶𝐽𝑋 = 𝐶 ) → 𝐶𝐽 )
4 2 3 sselpwd ( ( 𝐽 ∈ CovHasRef 𝐴𝐶𝐽𝑋 = 𝐶 ) → 𝐶 ∈ 𝒫 𝐽 )
5 1 iscref ( 𝐽 ∈ CovHasRef 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝑦 ) ) )
6 5 simprbi ( 𝐽 ∈ CovHasRef 𝐴 → ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝑦 ) )
7 6 3ad2ant1 ( ( 𝐽 ∈ CovHasRef 𝐴𝐶𝐽𝑋 = 𝐶 ) → ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝑦 ) )
8 simp3 ( ( 𝐽 ∈ CovHasRef 𝐴𝐶𝐽𝑋 = 𝐶 ) → 𝑋 = 𝐶 )
9 unieq ( 𝑦 = 𝐶 𝑦 = 𝐶 )
10 9 eqeq2d ( 𝑦 = 𝐶 → ( 𝑋 = 𝑦𝑋 = 𝐶 ) )
11 breq2 ( 𝑦 = 𝐶 → ( 𝑧 Ref 𝑦𝑧 Ref 𝐶 ) )
12 11 rexbidv ( 𝑦 = 𝐶 → ( ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝑦 ↔ ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝐶 ) )
13 10 12 imbi12d ( 𝑦 = 𝐶 → ( ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝑦 ) ↔ ( 𝑋 = 𝐶 → ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝐶 ) ) )
14 13 rspcv ( 𝐶 ∈ 𝒫 𝐽 → ( ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝑦 ) → ( 𝑋 = 𝐶 → ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝐶 ) ) )
15 4 7 8 14 syl3c ( ( 𝐽 ∈ CovHasRef 𝐴𝐶𝐽𝑋 = 𝐶 ) → ∃ 𝑧 ∈ ( 𝒫 𝐽𝐴 ) 𝑧 Ref 𝐶 )