Step |
Hyp |
Ref |
Expression |
1 |
|
crefi.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
simp1 |
⊢ ( ( 𝐽 ∈ CovHasRef 𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶 ) → 𝐽 ∈ CovHasRef 𝐴 ) |
3 |
|
simp2 |
⊢ ( ( 𝐽 ∈ CovHasRef 𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶 ) → 𝐶 ⊆ 𝐽 ) |
4 |
2 3
|
sselpwd |
⊢ ( ( 𝐽 ∈ CovHasRef 𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶 ) → 𝐶 ∈ 𝒫 𝐽 ) |
5 |
1
|
iscref |
⊢ ( 𝐽 ∈ CovHasRef 𝐴 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) ) ) |
6 |
5
|
simprbi |
⊢ ( 𝐽 ∈ CovHasRef 𝐴 → ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐽 ∈ CovHasRef 𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶 ) → ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) ) |
8 |
|
simp3 |
⊢ ( ( 𝐽 ∈ CovHasRef 𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶 ) → 𝑋 = ∪ 𝐶 ) |
9 |
|
unieq |
⊢ ( 𝑦 = 𝐶 → ∪ 𝑦 = ∪ 𝐶 ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑦 = 𝐶 → ( 𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝐶 ) ) |
11 |
|
breq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝑧 Ref 𝑦 ↔ 𝑧 Ref 𝐶 ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑦 = 𝐶 → ( ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝑦 ↔ ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝐶 ) ) |
13 |
10 12
|
imbi12d |
⊢ ( 𝑦 = 𝐶 → ( ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) ↔ ( 𝑋 = ∪ 𝐶 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝐶 ) ) ) |
14 |
13
|
rspcv |
⊢ ( 𝐶 ∈ 𝒫 𝐽 → ( ∀ 𝑦 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) → ( 𝑋 = ∪ 𝐶 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝐶 ) ) ) |
15 |
4 7 8 14
|
syl3c |
⊢ ( ( 𝐽 ∈ CovHasRef 𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶 ) → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ 𝐴 ) 𝑧 Ref 𝐶 ) |