Metamath Proof Explorer


Theorem ldlfcntref

Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020)

Ref Expression
Hypothesis ldlfcntref.x 𝑋 = 𝐽
Assertion ldlfcntref ( ( 𝐽 ∈ Ldlf ∧ 𝑈𝐽𝑋 = 𝑈 ) → ∃ 𝑣 ∈ 𝒫 𝐽 ( 𝑣 ≼ ω ∧ 𝑣 Ref 𝑈 ) )

Proof

Step Hyp Ref Expression
1 ldlfcntref.x 𝑋 = 𝐽
2 df-ldlf Ldlf = CovHasRef { 𝑥𝑥 ≼ ω }
3 vex 𝑣 ∈ V
4 breq1 ( 𝑥 = 𝑣 → ( 𝑥 ≼ ω ↔ 𝑣 ≼ ω ) )
5 3 4 elab ( 𝑣 ∈ { 𝑥𝑥 ≼ ω } ↔ 𝑣 ≼ ω )
6 5 biimpi ( 𝑣 ∈ { 𝑥𝑥 ≼ ω } → 𝑣 ≼ ω )
7 1 2 6 crefdf ( ( 𝐽 ∈ Ldlf ∧ 𝑈𝐽𝑋 = 𝑈 ) → ∃ 𝑣 ∈ 𝒫 𝐽 ( 𝑣 ≼ ω ∧ 𝑣 Ref 𝑈 ) )