Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ldlfcntref.x | ⊢ 𝑋 = ∪ 𝐽 | |
Assertion | ldlfcntref | ⊢ ( ( 𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) → ∃ 𝑣 ∈ 𝒫 𝐽 ( 𝑣 ≼ ω ∧ 𝑣 Ref 𝑈 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldlfcntref.x | ⊢ 𝑋 = ∪ 𝐽 | |
2 | df-ldlf | ⊢ Ldlf = CovHasRef { 𝑥 ∣ 𝑥 ≼ ω } | |
3 | vex | ⊢ 𝑣 ∈ V | |
4 | breq1 | ⊢ ( 𝑥 = 𝑣 → ( 𝑥 ≼ ω ↔ 𝑣 ≼ ω ) ) | |
5 | 3 4 | elab | ⊢ ( 𝑣 ∈ { 𝑥 ∣ 𝑥 ≼ ω } ↔ 𝑣 ≼ ω ) |
6 | 5 | biimpi | ⊢ ( 𝑣 ∈ { 𝑥 ∣ 𝑥 ≼ ω } → 𝑣 ≼ ω ) |
7 | 1 2 6 | crefdf | ⊢ ( ( 𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) → ∃ 𝑣 ∈ 𝒫 𝐽 ( 𝑣 ≼ ω ∧ 𝑣 Ref 𝑈 ) ) |