Metamath Proof Explorer


Definition df-left

Description: Define the left options of a surreal. This is the set of surreals that are simpler and less than the given surreal. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion df-left
|- _L = ( x e. No |-> { y e. ( _Old ` ( bday ` x ) ) | y 

Detailed syntax breakdown

Step Hyp Ref Expression
0 cleft
 |-  _L
1 vx
 |-  x
2 csur
 |-  No
3 vy
 |-  y
4 cold
 |-  _Old
5 cbday
 |-  bday
6 1 cv
 |-  x
7 6 5 cfv
 |-  ( bday ` x )
8 7 4 cfv
 |-  ( _Old ` ( bday ` x ) )
9 3 cv
 |-  y
10 cslt
 |-  
11 9 6 10 wbr
 |-  y 
12 11 3 8 crab
 |-  { y e. ( _Old ` ( bday ` x ) ) | y 
13 1 2 12 cmpt
 |-  ( x e. No |-> { y e. ( _Old ` ( bday ` x ) ) | y 
14 0 13 wceq
 |-  _L = ( x e. No |-> { y e. ( _Old ` ( bday ` x ) ) | y