Metamath Proof Explorer


Definition df-lgam

Description: Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log (G ( x ) ) because the branch cuts are placed differently (we do have exp ( logG ( x ) ) = _G ( x ) , though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ZZ \ NN , where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014)

Ref Expression
Assertion df-lgam
|- log_G = ( z e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clgam
 |-  log_G
1 vz
 |-  z
2 cc
 |-  CC
3 cz
 |-  ZZ
4 cn
 |-  NN
5 3 4 cdif
 |-  ( ZZ \ NN )
6 2 5 cdif
 |-  ( CC \ ( ZZ \ NN ) )
7 vm
 |-  m
8 1 cv
 |-  z
9 cmul
 |-  x.
10 clog
 |-  log
11 7 cv
 |-  m
12 caddc
 |-  +
13 c1
 |-  1
14 11 13 12 co
 |-  ( m + 1 )
15 cdiv
 |-  /
16 14 11 15 co
 |-  ( ( m + 1 ) / m )
17 16 10 cfv
 |-  ( log ` ( ( m + 1 ) / m ) )
18 8 17 9 co
 |-  ( z x. ( log ` ( ( m + 1 ) / m ) ) )
19 cmin
 |-  -
20 8 11 15 co
 |-  ( z / m )
21 20 13 12 co
 |-  ( ( z / m ) + 1 )
22 21 10 cfv
 |-  ( log ` ( ( z / m ) + 1 ) )
23 18 22 19 co
 |-  ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) )
24 4 23 7 csu
 |-  sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) )
25 8 10 cfv
 |-  ( log ` z )
26 24 25 19 co
 |-  ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) )
27 1 6 26 cmpt
 |-  ( z e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) ) )
28 0 27 wceq
 |-  log_G = ( z e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) ) )