| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clgam |
|- log_G |
| 1 |
|
vz |
|- z |
| 2 |
|
cc |
|- CC |
| 3 |
|
cz |
|- ZZ |
| 4 |
|
cn |
|- NN |
| 5 |
3 4
|
cdif |
|- ( ZZ \ NN ) |
| 6 |
2 5
|
cdif |
|- ( CC \ ( ZZ \ NN ) ) |
| 7 |
|
vm |
|- m |
| 8 |
1
|
cv |
|- z |
| 9 |
|
cmul |
|- x. |
| 10 |
|
clog |
|- log |
| 11 |
7
|
cv |
|- m |
| 12 |
|
caddc |
|- + |
| 13 |
|
c1 |
|- 1 |
| 14 |
11 13 12
|
co |
|- ( m + 1 ) |
| 15 |
|
cdiv |
|- / |
| 16 |
14 11 15
|
co |
|- ( ( m + 1 ) / m ) |
| 17 |
16 10
|
cfv |
|- ( log ` ( ( m + 1 ) / m ) ) |
| 18 |
8 17 9
|
co |
|- ( z x. ( log ` ( ( m + 1 ) / m ) ) ) |
| 19 |
|
cmin |
|- - |
| 20 |
8 11 15
|
co |
|- ( z / m ) |
| 21 |
20 13 12
|
co |
|- ( ( z / m ) + 1 ) |
| 22 |
21 10
|
cfv |
|- ( log ` ( ( z / m ) + 1 ) ) |
| 23 |
18 22 19
|
co |
|- ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) |
| 24 |
4 23 7
|
csu |
|- sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) |
| 25 |
8 10
|
cfv |
|- ( log ` z ) |
| 26 |
24 25 19
|
co |
|- ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) ) |
| 27 |
1 6 26
|
cmpt |
|- ( z e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) ) ) |
| 28 |
0 27
|
wceq |
|- log_G = ( z e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) ) ) |