Step |
Hyp |
Ref |
Expression |
0 |
|
clgam |
|- log_G |
1 |
|
vz |
|- z |
2 |
|
cc |
|- CC |
3 |
|
cz |
|- ZZ |
4 |
|
cn |
|- NN |
5 |
3 4
|
cdif |
|- ( ZZ \ NN ) |
6 |
2 5
|
cdif |
|- ( CC \ ( ZZ \ NN ) ) |
7 |
|
vm |
|- m |
8 |
1
|
cv |
|- z |
9 |
|
cmul |
|- x. |
10 |
|
clog |
|- log |
11 |
7
|
cv |
|- m |
12 |
|
caddc |
|- + |
13 |
|
c1 |
|- 1 |
14 |
11 13 12
|
co |
|- ( m + 1 ) |
15 |
|
cdiv |
|- / |
16 |
14 11 15
|
co |
|- ( ( m + 1 ) / m ) |
17 |
16 10
|
cfv |
|- ( log ` ( ( m + 1 ) / m ) ) |
18 |
8 17 9
|
co |
|- ( z x. ( log ` ( ( m + 1 ) / m ) ) ) |
19 |
|
cmin |
|- - |
20 |
8 11 15
|
co |
|- ( z / m ) |
21 |
20 13 12
|
co |
|- ( ( z / m ) + 1 ) |
22 |
21 10
|
cfv |
|- ( log ` ( ( z / m ) + 1 ) ) |
23 |
18 22 19
|
co |
|- ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) |
24 |
4 23 7
|
csu |
|- sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) |
25 |
8 10
|
cfv |
|- ( log ` z ) |
26 |
24 25 19
|
co |
|- ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) ) |
27 |
1 6 26
|
cmpt |
|- ( z e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) ) ) |
28 |
0 27
|
wceq |
|- log_G = ( z e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) ) ) |