| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clgam |  |-  log_G | 
						
							| 1 |  | vz |  |-  z | 
						
							| 2 |  | cc |  |-  CC | 
						
							| 3 |  | cz |  |-  ZZ | 
						
							| 4 |  | cn |  |-  NN | 
						
							| 5 | 3 4 | cdif |  |-  ( ZZ \ NN ) | 
						
							| 6 | 2 5 | cdif |  |-  ( CC \ ( ZZ \ NN ) ) | 
						
							| 7 |  | vm |  |-  m | 
						
							| 8 | 1 | cv |  |-  z | 
						
							| 9 |  | cmul |  |-  x. | 
						
							| 10 |  | clog |  |-  log | 
						
							| 11 | 7 | cv |  |-  m | 
						
							| 12 |  | caddc |  |-  + | 
						
							| 13 |  | c1 |  |-  1 | 
						
							| 14 | 11 13 12 | co |  |-  ( m + 1 ) | 
						
							| 15 |  | cdiv |  |-  / | 
						
							| 16 | 14 11 15 | co |  |-  ( ( m + 1 ) / m ) | 
						
							| 17 | 16 10 | cfv |  |-  ( log ` ( ( m + 1 ) / m ) ) | 
						
							| 18 | 8 17 9 | co |  |-  ( z x. ( log ` ( ( m + 1 ) / m ) ) ) | 
						
							| 19 |  | cmin |  |-  - | 
						
							| 20 | 8 11 15 | co |  |-  ( z / m ) | 
						
							| 21 | 20 13 12 | co |  |-  ( ( z / m ) + 1 ) | 
						
							| 22 | 21 10 | cfv |  |-  ( log ` ( ( z / m ) + 1 ) ) | 
						
							| 23 | 18 22 19 | co |  |-  ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) | 
						
							| 24 | 4 23 7 | csu |  |-  sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) | 
						
							| 25 | 8 10 | cfv |  |-  ( log ` z ) | 
						
							| 26 | 24 25 19 | co |  |-  ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) ) | 
						
							| 27 | 1 6 26 | cmpt |  |-  ( z e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) ) ) | 
						
							| 28 | 0 27 | wceq |  |-  log_G = ( z e. ( CC \ ( ZZ \ NN ) ) |-> ( sum_ m e. NN ( ( z x. ( log ` ( ( m + 1 ) / m ) ) ) - ( log ` ( ( z / m ) + 1 ) ) ) - ( log ` z ) ) ) |