| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clgam | ⊢ log Γ | 
						
							| 1 |  | vz | ⊢ 𝑧 | 
						
							| 2 |  | cc | ⊢ ℂ | 
						
							| 3 |  | cz | ⊢ ℤ | 
						
							| 4 |  | cn | ⊢ ℕ | 
						
							| 5 | 3 4 | cdif | ⊢ ( ℤ  ∖  ℕ ) | 
						
							| 6 | 2 5 | cdif | ⊢ ( ℂ  ∖  ( ℤ  ∖  ℕ ) ) | 
						
							| 7 |  | vm | ⊢ 𝑚 | 
						
							| 8 | 1 | cv | ⊢ 𝑧 | 
						
							| 9 |  | cmul | ⊢  · | 
						
							| 10 |  | clog | ⊢ log | 
						
							| 11 | 7 | cv | ⊢ 𝑚 | 
						
							| 12 |  | caddc | ⊢  + | 
						
							| 13 |  | c1 | ⊢ 1 | 
						
							| 14 | 11 13 12 | co | ⊢ ( 𝑚  +  1 ) | 
						
							| 15 |  | cdiv | ⊢  / | 
						
							| 16 | 14 11 15 | co | ⊢ ( ( 𝑚  +  1 )  /  𝑚 ) | 
						
							| 17 | 16 10 | cfv | ⊢ ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) | 
						
							| 18 | 8 17 9 | co | ⊢ ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) ) | 
						
							| 19 |  | cmin | ⊢  − | 
						
							| 20 | 8 11 15 | co | ⊢ ( 𝑧  /  𝑚 ) | 
						
							| 21 | 20 13 12 | co | ⊢ ( ( 𝑧  /  𝑚 )  +  1 ) | 
						
							| 22 | 21 10 | cfv | ⊢ ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) | 
						
							| 23 | 18 22 19 | co | ⊢ ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) | 
						
							| 24 | 4 23 7 | csu | ⊢ Σ 𝑚  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) ) | 
						
							| 25 | 8 10 | cfv | ⊢ ( log ‘ 𝑧 ) | 
						
							| 26 | 24 25 19 | co | ⊢ ( Σ 𝑚  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) ) | 
						
							| 27 | 1 6 26 | cmpt | ⊢ ( 𝑧  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↦  ( Σ 𝑚  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) ) ) | 
						
							| 28 | 0 27 | wceq | ⊢ log Γ  =  ( 𝑧  ∈  ( ℂ  ∖  ( ℤ  ∖  ℕ ) )  ↦  ( Σ 𝑚  ∈  ℕ ( ( 𝑧  ·  ( log ‘ ( ( 𝑚  +  1 )  /  𝑚 ) ) )  −  ( log ‘ ( ( 𝑧  /  𝑚 )  +  1 ) ) )  −  ( log ‘ 𝑧 ) ) ) |