| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clgam |
⊢ log Γ |
| 1 |
|
vz |
⊢ 𝑧 |
| 2 |
|
cc |
⊢ ℂ |
| 3 |
|
cz |
⊢ ℤ |
| 4 |
|
cn |
⊢ ℕ |
| 5 |
3 4
|
cdif |
⊢ ( ℤ ∖ ℕ ) |
| 6 |
2 5
|
cdif |
⊢ ( ℂ ∖ ( ℤ ∖ ℕ ) ) |
| 7 |
|
vm |
⊢ 𝑚 |
| 8 |
1
|
cv |
⊢ 𝑧 |
| 9 |
|
cmul |
⊢ · |
| 10 |
|
clog |
⊢ log |
| 11 |
7
|
cv |
⊢ 𝑚 |
| 12 |
|
caddc |
⊢ + |
| 13 |
|
c1 |
⊢ 1 |
| 14 |
11 13 12
|
co |
⊢ ( 𝑚 + 1 ) |
| 15 |
|
cdiv |
⊢ / |
| 16 |
14 11 15
|
co |
⊢ ( ( 𝑚 + 1 ) / 𝑚 ) |
| 17 |
16 10
|
cfv |
⊢ ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) |
| 18 |
8 17 9
|
co |
⊢ ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) |
| 19 |
|
cmin |
⊢ − |
| 20 |
8 11 15
|
co |
⊢ ( 𝑧 / 𝑚 ) |
| 21 |
20 13 12
|
co |
⊢ ( ( 𝑧 / 𝑚 ) + 1 ) |
| 22 |
21 10
|
cfv |
⊢ ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) |
| 23 |
18 22 19
|
co |
⊢ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) |
| 24 |
4 23 7
|
csu |
⊢ Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) |
| 25 |
8 10
|
cfv |
⊢ ( log ‘ 𝑧 ) |
| 26 |
24 25 19
|
co |
⊢ ( Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) |
| 27 |
1 6 26
|
cmpt |
⊢ ( 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ) |
| 28 |
0 27
|
wceq |
⊢ log Γ = ( 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ) |