Step |
Hyp |
Ref |
Expression |
0 |
|
clgam |
⊢ log Γ |
1 |
|
vz |
⊢ 𝑧 |
2 |
|
cc |
⊢ ℂ |
3 |
|
cz |
⊢ ℤ |
4 |
|
cn |
⊢ ℕ |
5 |
3 4
|
cdif |
⊢ ( ℤ ∖ ℕ ) |
6 |
2 5
|
cdif |
⊢ ( ℂ ∖ ( ℤ ∖ ℕ ) ) |
7 |
|
vm |
⊢ 𝑚 |
8 |
1
|
cv |
⊢ 𝑧 |
9 |
|
cmul |
⊢ · |
10 |
|
clog |
⊢ log |
11 |
7
|
cv |
⊢ 𝑚 |
12 |
|
caddc |
⊢ + |
13 |
|
c1 |
⊢ 1 |
14 |
11 13 12
|
co |
⊢ ( 𝑚 + 1 ) |
15 |
|
cdiv |
⊢ / |
16 |
14 11 15
|
co |
⊢ ( ( 𝑚 + 1 ) / 𝑚 ) |
17 |
16 10
|
cfv |
⊢ ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) |
18 |
8 17 9
|
co |
⊢ ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) |
19 |
|
cmin |
⊢ − |
20 |
8 11 15
|
co |
⊢ ( 𝑧 / 𝑚 ) |
21 |
20 13 12
|
co |
⊢ ( ( 𝑧 / 𝑚 ) + 1 ) |
22 |
21 10
|
cfv |
⊢ ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) |
23 |
18 22 19
|
co |
⊢ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) |
24 |
4 23 7
|
csu |
⊢ Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) |
25 |
8 10
|
cfv |
⊢ ( log ‘ 𝑧 ) |
26 |
24 25 19
|
co |
⊢ ( Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) |
27 |
1 6 26
|
cmpt |
⊢ ( 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ) |
28 |
0 27
|
wceq |
⊢ log Γ = ( 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) ) |