Metamath Proof Explorer


Definition df-lgam

Description: Define the log-Gamma function. We can work with this form of the gamma function a bit easier than the equivalent expression for the gamma function itself, and moreover this function is not actually equal to log (G ( x ) ) because the branch cuts are placed differently (we do have exp ( logG ( x ) ) = _G ( x ) , though). This definition is attributed to Euler, and unlike the usual integral definition is defined on the entire complex plane except the nonpositive integers ZZ \ NN , where the function has simple poles. (Contributed by Mario Carneiro, 12-Jul-2014)

Ref Expression
Assertion df-lgam log Γ = ( 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clgam log Γ
1 vz 𝑧
2 cc
3 cz
4 cn
5 3 4 cdif ( ℤ ∖ ℕ )
6 2 5 cdif ( ℂ ∖ ( ℤ ∖ ℕ ) )
7 vm 𝑚
8 1 cv 𝑧
9 cmul ·
10 clog log
11 7 cv 𝑚
12 caddc +
13 c1 1
14 11 13 12 co ( 𝑚 + 1 )
15 cdiv /
16 14 11 15 co ( ( 𝑚 + 1 ) / 𝑚 )
17 16 10 cfv ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) )
18 8 17 9 co ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) )
19 cmin
20 8 11 15 co ( 𝑧 / 𝑚 )
21 20 13 12 co ( ( 𝑧 / 𝑚 ) + 1 )
22 21 10 cfv ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) )
23 18 22 19 co ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) )
24 4 23 7 csu Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) )
25 8 10 cfv ( log ‘ 𝑧 )
26 24 25 19 co ( Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) − ( log ‘ 𝑧 ) )
27 1 6 26 cmpt ( 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) )
28 0 27 wceq log Γ = ( 𝑧 ∈ ( ℂ ∖ ( ℤ ∖ ℕ ) ) ↦ ( Σ 𝑚 ∈ ℕ ( ( 𝑧 · ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) ) − ( log ‘ ( ( 𝑧 / 𝑚 ) + 1 ) ) ) − ( log ‘ 𝑧 ) ) )