Description: A ring isleft-Noetherian iff it is Noetherian as a left module over itself. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lnr | |- LNoeR = { a e. Ring | ( ringLMod ` a ) e. LNoeM } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clnr | |- LNoeR |
|
| 1 | va | |- a |
|
| 2 | crg | |- Ring |
|
| 3 | crglmod | |- ringLMod |
|
| 4 | 1 | cv | |- a |
| 5 | 4 3 | cfv | |- ( ringLMod ` a ) |
| 6 | clnm | |- LNoeM |
|
| 7 | 5 6 | wcel | |- ( ringLMod ` a ) e. LNoeM |
| 8 | 7 1 2 | crab | |- { a e. Ring | ( ringLMod ` a ) e. LNoeM } |
| 9 | 0 8 | wceq | |- LNoeR = { a e. Ring | ( ringLMod ` a ) e. LNoeM } |