Description: Define the log_ operator. This is the logarithm generalized to an arbitrary base. It can be used as ( ( log_B )X ) for "log base B of X". This formulation suggested by Mario Carneiro. (Contributed by David A. Wheeler, 14-Jul-2017) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-logbALT | |- log_ = ( b e. ( CC \ { 0 , 1 } ) |-> ( x e. ( CC \ { 0 } ) |-> ( ( log ` x ) / ( log ` b ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | clog- | |- log_ |
|
1 | vb | |- b |
|
2 | cc | |- CC |
|
3 | cc0 | |- 0 |
|
4 | c1 | |- 1 |
|
5 | 3 4 | cpr | |- { 0 , 1 } |
6 | 2 5 | cdif | |- ( CC \ { 0 , 1 } ) |
7 | vx | |- x |
|
8 | 3 | csn | |- { 0 } |
9 | 2 8 | cdif | |- ( CC \ { 0 } ) |
10 | clog | |- log |
|
11 | 7 | cv | |- x |
12 | 11 10 | cfv | |- ( log ` x ) |
13 | cdiv | |- / |
|
14 | 1 | cv | |- b |
15 | 14 10 | cfv | |- ( log ` b ) |
16 | 12 15 13 | co | |- ( ( log ` x ) / ( log ` b ) ) |
17 | 7 9 16 | cmpt | |- ( x e. ( CC \ { 0 } ) |-> ( ( log ` x ) / ( log ` b ) ) ) |
18 | 1 6 17 | cmpt | |- ( b e. ( CC \ { 0 , 1 } ) |-> ( x e. ( CC \ { 0 } ) |-> ( ( log ` x ) / ( log ` b ) ) ) ) |
19 | 0 18 | wceq | |- log_ = ( b e. ( CC \ { 0 , 1 } ) |-> ( x e. ( CC \ { 0 } ) |-> ( ( log ` x ) / ( log ` b ) ) ) ) |