Metamath Proof Explorer


Definition df-logbALT

Description: Define the log_ operator. This is the logarithm generalized to an arbitrary base. It can be used as ( ( log_B )X ) for "log base B of X". This formulation suggested by Mario Carneiro. (Contributed by David A. Wheeler, 14-Jul-2017) (New usage is discouraged.)

Ref Expression
Assertion df-logbALT
|- log_ = ( b e. ( CC \ { 0 , 1 } ) |-> ( x e. ( CC \ { 0 } ) |-> ( ( log ` x ) / ( log ` b ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clog-
 |-  log_
1 vb
 |-  b
2 cc
 |-  CC
3 cc0
 |-  0
4 c1
 |-  1
5 3 4 cpr
 |-  { 0 , 1 }
6 2 5 cdif
 |-  ( CC \ { 0 , 1 } )
7 vx
 |-  x
8 3 csn
 |-  { 0 }
9 2 8 cdif
 |-  ( CC \ { 0 } )
10 clog
 |-  log
11 7 cv
 |-  x
12 11 10 cfv
 |-  ( log ` x )
13 cdiv
 |-  /
14 1 cv
 |-  b
15 14 10 cfv
 |-  ( log ` b )
16 12 15 13 co
 |-  ( ( log ` x ) / ( log ` b ) )
17 7 9 16 cmpt
 |-  ( x e. ( CC \ { 0 } ) |-> ( ( log ` x ) / ( log ` b ) ) )
18 1 6 17 cmpt
 |-  ( b e. ( CC \ { 0 , 1 } ) |-> ( x e. ( CC \ { 0 } ) |-> ( ( log ` x ) / ( log ` b ) ) ) )
19 0 18 wceq
 |-  log_ = ( b e. ( CC \ { 0 , 1 } ) |-> ( x e. ( CC \ { 0 } ) |-> ( ( log ` x ) / ( log ` b ) ) ) )