| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clog- |
⊢ log_ |
| 1 |
|
vb |
⊢ 𝑏 |
| 2 |
|
cc |
⊢ ℂ |
| 3 |
|
cc0 |
⊢ 0 |
| 4 |
|
c1 |
⊢ 1 |
| 5 |
3 4
|
cpr |
⊢ { 0 , 1 } |
| 6 |
2 5
|
cdif |
⊢ ( ℂ ∖ { 0 , 1 } ) |
| 7 |
|
vx |
⊢ 𝑥 |
| 8 |
3
|
csn |
⊢ { 0 } |
| 9 |
2 8
|
cdif |
⊢ ( ℂ ∖ { 0 } ) |
| 10 |
|
clog |
⊢ log |
| 11 |
7
|
cv |
⊢ 𝑥 |
| 12 |
11 10
|
cfv |
⊢ ( log ‘ 𝑥 ) |
| 13 |
|
cdiv |
⊢ / |
| 14 |
1
|
cv |
⊢ 𝑏 |
| 15 |
14 10
|
cfv |
⊢ ( log ‘ 𝑏 ) |
| 16 |
12 15 13
|
co |
⊢ ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) ) |
| 17 |
7 9 16
|
cmpt |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) ) ) |
| 18 |
1 6 17
|
cmpt |
⊢ ( 𝑏 ∈ ( ℂ ∖ { 0 , 1 } ) ↦ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) ) ) ) |
| 19 |
0 18
|
wceq |
⊢ log_ = ( 𝑏 ∈ ( ℂ ∖ { 0 , 1 } ) ↦ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) ) ) ) |