Step |
Hyp |
Ref |
Expression |
0 |
|
clog- |
⊢ log_ |
1 |
|
vb |
⊢ 𝑏 |
2 |
|
cc |
⊢ ℂ |
3 |
|
cc0 |
⊢ 0 |
4 |
|
c1 |
⊢ 1 |
5 |
3 4
|
cpr |
⊢ { 0 , 1 } |
6 |
2 5
|
cdif |
⊢ ( ℂ ∖ { 0 , 1 } ) |
7 |
|
vx |
⊢ 𝑥 |
8 |
3
|
csn |
⊢ { 0 } |
9 |
2 8
|
cdif |
⊢ ( ℂ ∖ { 0 } ) |
10 |
|
clog |
⊢ log |
11 |
7
|
cv |
⊢ 𝑥 |
12 |
11 10
|
cfv |
⊢ ( log ‘ 𝑥 ) |
13 |
|
cdiv |
⊢ / |
14 |
1
|
cv |
⊢ 𝑏 |
15 |
14 10
|
cfv |
⊢ ( log ‘ 𝑏 ) |
16 |
12 15 13
|
co |
⊢ ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) ) |
17 |
7 9 16
|
cmpt |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) ) ) |
18 |
1 6 17
|
cmpt |
⊢ ( 𝑏 ∈ ( ℂ ∖ { 0 , 1 } ) ↦ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) ) ) ) |
19 |
0 18
|
wceq |
⊢ log_ = ( 𝑏 ∈ ( ℂ ∖ { 0 , 1 } ) ↦ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) ) ) ) |