Metamath Proof Explorer


Definition df-logbALT

Description: Define the log_ operator. This is the logarithm generalized to an arbitrary base. It can be used as ( ( log_B )X ) for "log base B of X". This formulation suggested by Mario Carneiro. (Contributed by David A. Wheeler, 14-Jul-2017) (New usage is discouraged.)

Ref Expression
Assertion df-logbALT log_ = ( 𝑏 ∈ ( ℂ ∖ { 0 , 1 } ) ↦ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clog- log_
1 vb 𝑏
2 cc
3 cc0 0
4 c1 1
5 3 4 cpr { 0 , 1 }
6 2 5 cdif ( ℂ ∖ { 0 , 1 } )
7 vx 𝑥
8 3 csn { 0 }
9 2 8 cdif ( ℂ ∖ { 0 } )
10 clog log
11 7 cv 𝑥
12 11 10 cfv ( log ‘ 𝑥 )
13 cdiv /
14 1 cv 𝑏
15 14 10 cfv ( log ‘ 𝑏 )
16 12 15 13 co ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) )
17 7 9 16 cmpt ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) ) )
18 1 6 17 cmpt ( 𝑏 ∈ ( ℂ ∖ { 0 , 1 } ) ↦ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) ) ) )
19 0 18 wceq log_ = ( 𝑏 ∈ ( ℂ ∖ { 0 , 1 } ) ↦ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑥 ) / ( log ‘ 𝑏 ) ) ) )