| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clp |
|- limPt |
| 1 |
|
vj |
|- j |
| 2 |
|
ctop |
|- Top |
| 3 |
|
vx |
|- x |
| 4 |
1
|
cv |
|- j |
| 5 |
4
|
cuni |
|- U. j |
| 6 |
5
|
cpw |
|- ~P U. j |
| 7 |
|
vy |
|- y |
| 8 |
7
|
cv |
|- y |
| 9 |
|
ccl |
|- cls |
| 10 |
4 9
|
cfv |
|- ( cls ` j ) |
| 11 |
3
|
cv |
|- x |
| 12 |
8
|
csn |
|- { y } |
| 13 |
11 12
|
cdif |
|- ( x \ { y } ) |
| 14 |
13 10
|
cfv |
|- ( ( cls ` j ) ` ( x \ { y } ) ) |
| 15 |
8 14
|
wcel |
|- y e. ( ( cls ` j ) ` ( x \ { y } ) ) |
| 16 |
15 7
|
cab |
|- { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } |
| 17 |
3 6 16
|
cmpt |
|- ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) |
| 18 |
1 2 17
|
cmpt |
|- ( j e. Top |-> ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) ) |
| 19 |
0 18
|
wceq |
|- limPt = ( j e. Top |-> ( x e. ~P U. j |-> { y | y e. ( ( cls ` j ) ` ( x \ { y } ) ) } ) ) |