Step |
Hyp |
Ref |
Expression |
0 |
|
clsm |
|- LSSum |
1 |
|
vw |
|- w |
2 |
|
cvv |
|- _V |
3 |
|
vt |
|- t |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- w |
6 |
5 4
|
cfv |
|- ( Base ` w ) |
7 |
6
|
cpw |
|- ~P ( Base ` w ) |
8 |
|
vu |
|- u |
9 |
|
vx |
|- x |
10 |
3
|
cv |
|- t |
11 |
|
vy |
|- y |
12 |
8
|
cv |
|- u |
13 |
9
|
cv |
|- x |
14 |
|
cplusg |
|- +g |
15 |
5 14
|
cfv |
|- ( +g ` w ) |
16 |
11
|
cv |
|- y |
17 |
13 16 15
|
co |
|- ( x ( +g ` w ) y ) |
18 |
9 11 10 12 17
|
cmpo |
|- ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) |
19 |
18
|
crn |
|- ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) |
20 |
3 8 7 7 19
|
cmpo |
|- ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) |
21 |
1 2 20
|
cmpt |
|- ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) ) |
22 |
0 21
|
wceq |
|- LSSum = ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) ) |