| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clsm |
|- LSSum |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vt |
|- t |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- w |
| 6 |
5 4
|
cfv |
|- ( Base ` w ) |
| 7 |
6
|
cpw |
|- ~P ( Base ` w ) |
| 8 |
|
vu |
|- u |
| 9 |
|
vx |
|- x |
| 10 |
3
|
cv |
|- t |
| 11 |
|
vy |
|- y |
| 12 |
8
|
cv |
|- u |
| 13 |
9
|
cv |
|- x |
| 14 |
|
cplusg |
|- +g |
| 15 |
5 14
|
cfv |
|- ( +g ` w ) |
| 16 |
11
|
cv |
|- y |
| 17 |
13 16 15
|
co |
|- ( x ( +g ` w ) y ) |
| 18 |
9 11 10 12 17
|
cmpo |
|- ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) |
| 19 |
18
|
crn |
|- ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) |
| 20 |
3 8 7 7 19
|
cmpo |
|- ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) |
| 21 |
1 2 20
|
cmpt |
|- ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) ) |
| 22 |
0 21
|
wceq |
|- LSSum = ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) ) |