| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cltr |
|- |
| 1 |
|
vx |
|- x |
| 2 |
|
vy |
|- y |
| 3 |
1
|
cv |
|- x |
| 4 |
|
cnr |
|- R. |
| 5 |
3 4
|
wcel |
|- x e. R. |
| 6 |
2
|
cv |
|- y |
| 7 |
6 4
|
wcel |
|- y e. R. |
| 8 |
5 7
|
wa |
|- ( x e. R. /\ y e. R. ) |
| 9 |
|
vz |
|- z |
| 10 |
|
vw |
|- w |
| 11 |
|
vv |
|- v |
| 12 |
|
vu |
|- u |
| 13 |
9
|
cv |
|- z |
| 14 |
10
|
cv |
|- w |
| 15 |
13 14
|
cop |
|- <. z , w >. |
| 16 |
|
cer |
|- ~R |
| 17 |
15 16
|
cec |
|- [ <. z , w >. ] ~R |
| 18 |
3 17
|
wceq |
|- x = [ <. z , w >. ] ~R |
| 19 |
11
|
cv |
|- v |
| 20 |
12
|
cv |
|- u |
| 21 |
19 20
|
cop |
|- <. v , u >. |
| 22 |
21 16
|
cec |
|- [ <. v , u >. ] ~R |
| 23 |
6 22
|
wceq |
|- y = [ <. v , u >. ] ~R |
| 24 |
18 23
|
wa |
|- ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) |
| 25 |
|
cpp |
|- +P. |
| 26 |
13 20 25
|
co |
|- ( z +P. u ) |
| 27 |
|
cltp |
|- |
| 28 |
14 19 25
|
co |
|- ( w +P. v ) |
| 29 |
26 28 27
|
wbr |
|- ( z +P. u ) |
| 30 |
24 29
|
wa |
|- ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 31 |
30 12
|
wex |
|- E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 32 |
31 11
|
wex |
|- E. v E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 33 |
32 10
|
wex |
|- E. w E. v E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 34 |
33 9
|
wex |
|- E. z E. w E. v E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 35 |
8 34
|
wa |
|- ( ( x e. R. /\ y e. R. ) /\ E. z E. w E. v E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 36 |
35 1 2
|
copab |
|- { <. x , y >. | ( ( x e. R. /\ y e. R. ) /\ E. z E. w E. v E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |
| 37 |
0 36
|
wceq |
|- . | ( ( x e. R. /\ y e. R. ) /\ E. z E. w E. v E. u ( ( x = [ <. z , w >. ] ~R /\ y = [ <. v , u >. ] ~R ) /\ ( z +P. u ) |