| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmatrepV |
|- matRepV |
| 1 |
|
vn |
|- n |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vr |
|- r |
| 4 |
|
vm |
|- m |
| 5 |
|
cbs |
|- Base |
| 6 |
1
|
cv |
|- n |
| 7 |
|
cmat |
|- Mat |
| 8 |
3
|
cv |
|- r |
| 9 |
6 8 7
|
co |
|- ( n Mat r ) |
| 10 |
9 5
|
cfv |
|- ( Base ` ( n Mat r ) ) |
| 11 |
|
vv |
|- v |
| 12 |
8 5
|
cfv |
|- ( Base ` r ) |
| 13 |
|
cmap |
|- ^m |
| 14 |
12 6 13
|
co |
|- ( ( Base ` r ) ^m n ) |
| 15 |
|
vk |
|- k |
| 16 |
|
vi |
|- i |
| 17 |
|
vj |
|- j |
| 18 |
17
|
cv |
|- j |
| 19 |
15
|
cv |
|- k |
| 20 |
18 19
|
wceq |
|- j = k |
| 21 |
11
|
cv |
|- v |
| 22 |
16
|
cv |
|- i |
| 23 |
22 21
|
cfv |
|- ( v ` i ) |
| 24 |
4
|
cv |
|- m |
| 25 |
22 18 24
|
co |
|- ( i m j ) |
| 26 |
20 23 25
|
cif |
|- if ( j = k , ( v ` i ) , ( i m j ) ) |
| 27 |
16 17 6 6 26
|
cmpo |
|- ( i e. n , j e. n |-> if ( j = k , ( v ` i ) , ( i m j ) ) ) |
| 28 |
15 6 27
|
cmpt |
|- ( k e. n |-> ( i e. n , j e. n |-> if ( j = k , ( v ` i ) , ( i m j ) ) ) ) |
| 29 |
4 11 10 14 28
|
cmpo |
|- ( m e. ( Base ` ( n Mat r ) ) , v e. ( ( Base ` r ) ^m n ) |-> ( k e. n |-> ( i e. n , j e. n |-> if ( j = k , ( v ` i ) , ( i m j ) ) ) ) ) |
| 30 |
1 3 2 2 29
|
cmpo |
|- ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) , v e. ( ( Base ` r ) ^m n ) |-> ( k e. n |-> ( i e. n , j e. n |-> if ( j = k , ( v ` i ) , ( i m j ) ) ) ) ) ) |
| 31 |
0 30
|
wceq |
|- matRepV = ( n e. _V , r e. _V |-> ( m e. ( Base ` ( n Mat r ) ) , v e. ( ( Base ` r ) ^m n ) |-> ( k e. n |-> ( i e. n , j e. n |-> if ( j = k , ( v ` i ) , ( i m j ) ) ) ) ) ) |