| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmend |
|- MEndo |
| 1 |
|
vm |
|- m |
| 2 |
|
cvv |
|- _V |
| 3 |
1
|
cv |
|- m |
| 4 |
|
clmhm |
|- LMHom |
| 5 |
3 3 4
|
co |
|- ( m LMHom m ) |
| 6 |
|
vb |
|- b |
| 7 |
|
cbs |
|- Base |
| 8 |
|
cnx |
|- ndx |
| 9 |
8 7
|
cfv |
|- ( Base ` ndx ) |
| 10 |
6
|
cv |
|- b |
| 11 |
9 10
|
cop |
|- <. ( Base ` ndx ) , b >. |
| 12 |
|
cplusg |
|- +g |
| 13 |
8 12
|
cfv |
|- ( +g ` ndx ) |
| 14 |
|
vx |
|- x |
| 15 |
|
vy |
|- y |
| 16 |
14
|
cv |
|- x |
| 17 |
3 12
|
cfv |
|- ( +g ` m ) |
| 18 |
17
|
cof |
|- oF ( +g ` m ) |
| 19 |
15
|
cv |
|- y |
| 20 |
16 19 18
|
co |
|- ( x oF ( +g ` m ) y ) |
| 21 |
14 15 10 10 20
|
cmpo |
|- ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) |
| 22 |
13 21
|
cop |
|- <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. |
| 23 |
|
cmulr |
|- .r |
| 24 |
8 23
|
cfv |
|- ( .r ` ndx ) |
| 25 |
16 19
|
ccom |
|- ( x o. y ) |
| 26 |
14 15 10 10 25
|
cmpo |
|- ( x e. b , y e. b |-> ( x o. y ) ) |
| 27 |
24 26
|
cop |
|- <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. |
| 28 |
11 22 27
|
ctp |
|- { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } |
| 29 |
|
csca |
|- Scalar |
| 30 |
8 29
|
cfv |
|- ( Scalar ` ndx ) |
| 31 |
3 29
|
cfv |
|- ( Scalar ` m ) |
| 32 |
30 31
|
cop |
|- <. ( Scalar ` ndx ) , ( Scalar ` m ) >. |
| 33 |
|
cvsca |
|- .s |
| 34 |
8 33
|
cfv |
|- ( .s ` ndx ) |
| 35 |
31 7
|
cfv |
|- ( Base ` ( Scalar ` m ) ) |
| 36 |
3 7
|
cfv |
|- ( Base ` m ) |
| 37 |
16
|
csn |
|- { x } |
| 38 |
36 37
|
cxp |
|- ( ( Base ` m ) X. { x } ) |
| 39 |
3 33
|
cfv |
|- ( .s ` m ) |
| 40 |
39
|
cof |
|- oF ( .s ` m ) |
| 41 |
38 19 40
|
co |
|- ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) |
| 42 |
14 15 35 10 41
|
cmpo |
|- ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) |
| 43 |
34 42
|
cop |
|- <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. |
| 44 |
32 43
|
cpr |
|- { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } |
| 45 |
28 44
|
cun |
|- ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) |
| 46 |
6 5 45
|
csb |
|- [_ ( m LMHom m ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) |
| 47 |
1 2 46
|
cmpt |
|- ( m e. _V |-> [_ ( m LMHom m ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) ) |
| 48 |
0 47
|
wceq |
|- MEndo = ( m e. _V |-> [_ ( m LMHom m ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) ) |