| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cmend |  |-  MEndo | 
						
							| 1 |  | vm |  |-  m | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 | 1 | cv |  |-  m | 
						
							| 4 |  | clmhm |  |-  LMHom | 
						
							| 5 | 3 3 4 | co |  |-  ( m LMHom m ) | 
						
							| 6 |  | vb |  |-  b | 
						
							| 7 |  | cbs |  |-  Base | 
						
							| 8 |  | cnx |  |-  ndx | 
						
							| 9 | 8 7 | cfv |  |-  ( Base ` ndx ) | 
						
							| 10 | 6 | cv |  |-  b | 
						
							| 11 | 9 10 | cop |  |-  <. ( Base ` ndx ) , b >. | 
						
							| 12 |  | cplusg |  |-  +g | 
						
							| 13 | 8 12 | cfv |  |-  ( +g ` ndx ) | 
						
							| 14 |  | vx |  |-  x | 
						
							| 15 |  | vy |  |-  y | 
						
							| 16 | 14 | cv |  |-  x | 
						
							| 17 | 3 12 | cfv |  |-  ( +g ` m ) | 
						
							| 18 | 17 | cof |  |-  oF ( +g ` m ) | 
						
							| 19 | 15 | cv |  |-  y | 
						
							| 20 | 16 19 18 | co |  |-  ( x oF ( +g ` m ) y ) | 
						
							| 21 | 14 15 10 10 20 | cmpo |  |-  ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) | 
						
							| 22 | 13 21 | cop |  |-  <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. | 
						
							| 23 |  | cmulr |  |-  .r | 
						
							| 24 | 8 23 | cfv |  |-  ( .r ` ndx ) | 
						
							| 25 | 16 19 | ccom |  |-  ( x o. y ) | 
						
							| 26 | 14 15 10 10 25 | cmpo |  |-  ( x e. b , y e. b |-> ( x o. y ) ) | 
						
							| 27 | 24 26 | cop |  |-  <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. | 
						
							| 28 | 11 22 27 | ctp |  |-  { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } | 
						
							| 29 |  | csca |  |-  Scalar | 
						
							| 30 | 8 29 | cfv |  |-  ( Scalar ` ndx ) | 
						
							| 31 | 3 29 | cfv |  |-  ( Scalar ` m ) | 
						
							| 32 | 30 31 | cop |  |-  <. ( Scalar ` ndx ) , ( Scalar ` m ) >. | 
						
							| 33 |  | cvsca |  |-  .s | 
						
							| 34 | 8 33 | cfv |  |-  ( .s ` ndx ) | 
						
							| 35 | 31 7 | cfv |  |-  ( Base ` ( Scalar ` m ) ) | 
						
							| 36 | 3 7 | cfv |  |-  ( Base ` m ) | 
						
							| 37 | 16 | csn |  |-  { x } | 
						
							| 38 | 36 37 | cxp |  |-  ( ( Base ` m ) X. { x } ) | 
						
							| 39 | 3 33 | cfv |  |-  ( .s ` m ) | 
						
							| 40 | 39 | cof |  |-  oF ( .s ` m ) | 
						
							| 41 | 38 19 40 | co |  |-  ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) | 
						
							| 42 | 14 15 35 10 41 | cmpo |  |-  ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) | 
						
							| 43 | 34 42 | cop |  |-  <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. | 
						
							| 44 | 32 43 | cpr |  |-  { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } | 
						
							| 45 | 28 44 | cun |  |-  ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) | 
						
							| 46 | 6 5 45 | csb |  |-  [_ ( m LMHom m ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) | 
						
							| 47 | 1 2 46 | cmpt |  |-  ( m e. _V |-> [_ ( m LMHom m ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) ) | 
						
							| 48 | 0 47 | wceq |  |-  MEndo = ( m e. _V |-> [_ ( m LMHom m ) / b ]_ ( { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( x e. b , y e. b |-> ( x oF ( +g ` m ) y ) ) >. , <. ( .r ` ndx ) , ( x e. b , y e. b |-> ( x o. y ) ) >. } u. { <. ( Scalar ` ndx ) , ( Scalar ` m ) >. , <. ( .s ` ndx ) , ( x e. ( Base ` ( Scalar ` m ) ) , y e. b |-> ( ( ( Base ` m ) X. { x } ) oF ( .s ` m ) y ) ) >. } ) ) |