Step |
Hyp |
Ref |
Expression |
0 |
|
cmend |
⊢ MEndo |
1 |
|
vm |
⊢ 𝑚 |
2 |
|
cvv |
⊢ V |
3 |
1
|
cv |
⊢ 𝑚 |
4 |
|
clmhm |
⊢ LMHom |
5 |
3 3 4
|
co |
⊢ ( 𝑚 LMHom 𝑚 ) |
6 |
|
vb |
⊢ 𝑏 |
7 |
|
cbs |
⊢ Base |
8 |
|
cnx |
⊢ ndx |
9 |
8 7
|
cfv |
⊢ ( Base ‘ ndx ) |
10 |
6
|
cv |
⊢ 𝑏 |
11 |
9 10
|
cop |
⊢ 〈 ( Base ‘ ndx ) , 𝑏 〉 |
12 |
|
cplusg |
⊢ +g |
13 |
8 12
|
cfv |
⊢ ( +g ‘ ndx ) |
14 |
|
vx |
⊢ 𝑥 |
15 |
|
vy |
⊢ 𝑦 |
16 |
14
|
cv |
⊢ 𝑥 |
17 |
3 12
|
cfv |
⊢ ( +g ‘ 𝑚 ) |
18 |
17
|
cof |
⊢ ∘f ( +g ‘ 𝑚 ) |
19 |
15
|
cv |
⊢ 𝑦 |
20 |
16 19 18
|
co |
⊢ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) |
21 |
14 15 10 10 20
|
cmpo |
⊢ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) |
22 |
13 21
|
cop |
⊢ 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 |
23 |
|
cmulr |
⊢ .r |
24 |
8 23
|
cfv |
⊢ ( .r ‘ ndx ) |
25 |
16 19
|
ccom |
⊢ ( 𝑥 ∘ 𝑦 ) |
26 |
14 15 10 10 25
|
cmpo |
⊢ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) |
27 |
24 26
|
cop |
⊢ 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 |
28 |
11 22 27
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } |
29 |
|
csca |
⊢ Scalar |
30 |
8 29
|
cfv |
⊢ ( Scalar ‘ ndx ) |
31 |
3 29
|
cfv |
⊢ ( Scalar ‘ 𝑚 ) |
32 |
30 31
|
cop |
⊢ 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) 〉 |
33 |
|
cvsca |
⊢ ·𝑠 |
34 |
8 33
|
cfv |
⊢ ( ·𝑠 ‘ ndx ) |
35 |
31 7
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑚 ) ) |
36 |
3 7
|
cfv |
⊢ ( Base ‘ 𝑚 ) |
37 |
16
|
csn |
⊢ { 𝑥 } |
38 |
36 37
|
cxp |
⊢ ( ( Base ‘ 𝑚 ) × { 𝑥 } ) |
39 |
3 33
|
cfv |
⊢ ( ·𝑠 ‘ 𝑚 ) |
40 |
39
|
cof |
⊢ ∘f ( ·𝑠 ‘ 𝑚 ) |
41 |
38 19 40
|
co |
⊢ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) |
42 |
14 15 35 10 41
|
cmpo |
⊢ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) |
43 |
34 42
|
cop |
⊢ 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) 〉 |
44 |
32 43
|
cpr |
⊢ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) 〉 } |
45 |
28 44
|
cun |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) 〉 } ) |
46 |
6 5 45
|
csb |
⊢ ⦋ ( 𝑚 LMHom 𝑚 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) 〉 } ) |
47 |
1 2 46
|
cmpt |
⊢ ( 𝑚 ∈ V ↦ ⦋ ( 𝑚 LMHom 𝑚 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) 〉 } ) ) |
48 |
0 47
|
wceq |
⊢ MEndo = ( 𝑚 ∈ V ↦ ⦋ ( 𝑚 LMHom 𝑚 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) 〉 } ) ) |