Metamath Proof Explorer


Definition df-mend

Description: Define the endomorphism algebra of a module. (Contributed by Stefan O'Rear, 2-Sep-2015)

Ref Expression
Assertion df-mend MEndo = ( 𝑚 ∈ V ↦ ( 𝑚 LMHom 𝑚 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥f ( +g𝑚 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥𝑦 ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠𝑚 ) 𝑦 ) ) ⟩ } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmend MEndo
1 vm 𝑚
2 cvv V
3 1 cv 𝑚
4 clmhm LMHom
5 3 3 4 co ( 𝑚 LMHom 𝑚 )
6 vb 𝑏
7 cbs Base
8 cnx ndx
9 8 7 cfv ( Base ‘ ndx )
10 6 cv 𝑏
11 9 10 cop ⟨ ( Base ‘ ndx ) , 𝑏
12 cplusg +g
13 8 12 cfv ( +g ‘ ndx )
14 vx 𝑥
15 vy 𝑦
16 14 cv 𝑥
17 3 12 cfv ( +g𝑚 )
18 17 cof f ( +g𝑚 )
19 15 cv 𝑦
20 16 19 18 co ( 𝑥f ( +g𝑚 ) 𝑦 )
21 14 15 10 10 20 cmpo ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥f ( +g𝑚 ) 𝑦 ) )
22 13 21 cop ⟨ ( +g ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥f ( +g𝑚 ) 𝑦 ) ) ⟩
23 cmulr .r
24 8 23 cfv ( .r ‘ ndx )
25 16 19 ccom ( 𝑥𝑦 )
26 14 15 10 10 25 cmpo ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥𝑦 ) )
27 24 26 cop ⟨ ( .r ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥𝑦 ) ) ⟩
28 11 22 27 ctp { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥f ( +g𝑚 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥𝑦 ) ) ⟩ }
29 csca Scalar
30 8 29 cfv ( Scalar ‘ ndx )
31 3 29 cfv ( Scalar ‘ 𝑚 )
32 30 31 cop ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) ⟩
33 cvsca ·𝑠
34 8 33 cfv ( ·𝑠 ‘ ndx )
35 31 7 cfv ( Base ‘ ( Scalar ‘ 𝑚 ) )
36 3 7 cfv ( Base ‘ 𝑚 )
37 16 csn { 𝑥 }
38 36 37 cxp ( ( Base ‘ 𝑚 ) × { 𝑥 } )
39 3 33 cfv ( ·𝑠𝑚 )
40 39 cof f ( ·𝑠𝑚 )
41 38 19 40 co ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠𝑚 ) 𝑦 )
42 14 15 35 10 41 cmpo ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠𝑚 ) 𝑦 ) )
43 34 42 cop ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠𝑚 ) 𝑦 ) ) ⟩
44 32 43 cpr { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠𝑚 ) 𝑦 ) ) ⟩ }
45 28 44 cun ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥f ( +g𝑚 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥𝑦 ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠𝑚 ) 𝑦 ) ) ⟩ } )
46 6 5 45 csb ( 𝑚 LMHom 𝑚 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥f ( +g𝑚 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥𝑦 ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠𝑚 ) 𝑦 ) ) ⟩ } )
47 1 2 46 cmpt ( 𝑚 ∈ V ↦ ( 𝑚 LMHom 𝑚 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥f ( +g𝑚 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥𝑦 ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠𝑚 ) 𝑦 ) ) ⟩ } ) )
48 0 47 wceq MEndo = ( 𝑚 ∈ V ↦ ( 𝑚 LMHom 𝑚 ) / 𝑏 ( { ⟨ ( Base ‘ ndx ) , 𝑏 ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥f ( +g𝑚 ) 𝑦 ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑥𝑏 , 𝑦𝑏 ↦ ( 𝑥𝑦 ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠𝑚 ) 𝑦 ) ) ⟩ } ) )