| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmend |
⊢ MEndo |
| 1 |
|
vm |
⊢ 𝑚 |
| 2 |
|
cvv |
⊢ V |
| 3 |
1
|
cv |
⊢ 𝑚 |
| 4 |
|
clmhm |
⊢ LMHom |
| 5 |
3 3 4
|
co |
⊢ ( 𝑚 LMHom 𝑚 ) |
| 6 |
|
vb |
⊢ 𝑏 |
| 7 |
|
cbs |
⊢ Base |
| 8 |
|
cnx |
⊢ ndx |
| 9 |
8 7
|
cfv |
⊢ ( Base ‘ ndx ) |
| 10 |
6
|
cv |
⊢ 𝑏 |
| 11 |
9 10
|
cop |
⊢ 〈 ( Base ‘ ndx ) , 𝑏 〉 |
| 12 |
|
cplusg |
⊢ +g |
| 13 |
8 12
|
cfv |
⊢ ( +g ‘ ndx ) |
| 14 |
|
vx |
⊢ 𝑥 |
| 15 |
|
vy |
⊢ 𝑦 |
| 16 |
14
|
cv |
⊢ 𝑥 |
| 17 |
3 12
|
cfv |
⊢ ( +g ‘ 𝑚 ) |
| 18 |
17
|
cof |
⊢ ∘f ( +g ‘ 𝑚 ) |
| 19 |
15
|
cv |
⊢ 𝑦 |
| 20 |
16 19 18
|
co |
⊢ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) |
| 21 |
14 15 10 10 20
|
cmpo |
⊢ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) |
| 22 |
13 21
|
cop |
⊢ 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 |
| 23 |
|
cmulr |
⊢ .r |
| 24 |
8 23
|
cfv |
⊢ ( .r ‘ ndx ) |
| 25 |
16 19
|
ccom |
⊢ ( 𝑥 ∘ 𝑦 ) |
| 26 |
14 15 10 10 25
|
cmpo |
⊢ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) |
| 27 |
24 26
|
cop |
⊢ 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 |
| 28 |
11 22 27
|
ctp |
⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } |
| 29 |
|
csca |
⊢ Scalar |
| 30 |
8 29
|
cfv |
⊢ ( Scalar ‘ ndx ) |
| 31 |
3 29
|
cfv |
⊢ ( Scalar ‘ 𝑚 ) |
| 32 |
30 31
|
cop |
⊢ 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) 〉 |
| 33 |
|
cvsca |
⊢ ·𝑠 |
| 34 |
8 33
|
cfv |
⊢ ( ·𝑠 ‘ ndx ) |
| 35 |
31 7
|
cfv |
⊢ ( Base ‘ ( Scalar ‘ 𝑚 ) ) |
| 36 |
3 7
|
cfv |
⊢ ( Base ‘ 𝑚 ) |
| 37 |
16
|
csn |
⊢ { 𝑥 } |
| 38 |
36 37
|
cxp |
⊢ ( ( Base ‘ 𝑚 ) × { 𝑥 } ) |
| 39 |
3 33
|
cfv |
⊢ ( ·𝑠 ‘ 𝑚 ) |
| 40 |
39
|
cof |
⊢ ∘f ( ·𝑠 ‘ 𝑚 ) |
| 41 |
38 19 40
|
co |
⊢ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) |
| 42 |
14 15 35 10 41
|
cmpo |
⊢ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) |
| 43 |
34 42
|
cop |
⊢ 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) 〉 |
| 44 |
32 43
|
cpr |
⊢ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) 〉 } |
| 45 |
28 44
|
cun |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) 〉 } ) |
| 46 |
6 5 45
|
csb |
⊢ ⦋ ( 𝑚 LMHom 𝑚 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) 〉 } ) |
| 47 |
1 2 46
|
cmpt |
⊢ ( 𝑚 ∈ V ↦ ⦋ ( 𝑚 LMHom 𝑚 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) 〉 } ) ) |
| 48 |
0 47
|
wceq |
⊢ MEndo = ( 𝑚 ∈ V ↦ ⦋ ( 𝑚 LMHom 𝑚 ) / 𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘f ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 ∘ 𝑦 ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑚 ) 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑚 ) ) , 𝑦 ∈ 𝑏 ↦ ( ( ( Base ‘ 𝑚 ) × { 𝑥 } ) ∘f ( ·𝑠 ‘ 𝑚 ) 𝑦 ) ) 〉 } ) ) |