| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cmend | ⊢ MEndo | 
						
							| 1 |  | vm | ⊢ 𝑚 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 | 1 | cv | ⊢ 𝑚 | 
						
							| 4 |  | clmhm | ⊢  LMHom | 
						
							| 5 | 3 3 4 | co | ⊢ ( 𝑚  LMHom  𝑚 ) | 
						
							| 6 |  | vb | ⊢ 𝑏 | 
						
							| 7 |  | cbs | ⊢ Base | 
						
							| 8 |  | cnx | ⊢ ndx | 
						
							| 9 | 8 7 | cfv | ⊢ ( Base ‘ ndx ) | 
						
							| 10 | 6 | cv | ⊢ 𝑏 | 
						
							| 11 | 9 10 | cop | ⊢ 〈 ( Base ‘ ndx ) ,  𝑏 〉 | 
						
							| 12 |  | cplusg | ⊢ +g | 
						
							| 13 | 8 12 | cfv | ⊢ ( +g ‘ ndx ) | 
						
							| 14 |  | vx | ⊢ 𝑥 | 
						
							| 15 |  | vy | ⊢ 𝑦 | 
						
							| 16 | 14 | cv | ⊢ 𝑥 | 
						
							| 17 | 3 12 | cfv | ⊢ ( +g ‘ 𝑚 ) | 
						
							| 18 | 17 | cof | ⊢  ∘f  ( +g ‘ 𝑚 ) | 
						
							| 19 | 15 | cv | ⊢ 𝑦 | 
						
							| 20 | 16 19 18 | co | ⊢ ( 𝑥  ∘f  ( +g ‘ 𝑚 ) 𝑦 ) | 
						
							| 21 | 14 15 10 10 20 | cmpo | ⊢ ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑚 ) 𝑦 ) ) | 
						
							| 22 | 13 21 | cop | ⊢ 〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 | 
						
							| 23 |  | cmulr | ⊢ .r | 
						
							| 24 | 8 23 | cfv | ⊢ ( .r ‘ ndx ) | 
						
							| 25 | 16 19 | ccom | ⊢ ( 𝑥  ∘  𝑦 ) | 
						
							| 26 | 14 15 10 10 25 | cmpo | ⊢ ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘  𝑦 ) ) | 
						
							| 27 | 24 26 | cop | ⊢ 〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 | 
						
							| 28 | 11 22 27 | ctp | ⊢ { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 } | 
						
							| 29 |  | csca | ⊢ Scalar | 
						
							| 30 | 8 29 | cfv | ⊢ ( Scalar ‘ ndx ) | 
						
							| 31 | 3 29 | cfv | ⊢ ( Scalar ‘ 𝑚 ) | 
						
							| 32 | 30 31 | cop | ⊢ 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑚 ) 〉 | 
						
							| 33 |  | cvsca | ⊢  ·𝑠 | 
						
							| 34 | 8 33 | cfv | ⊢ (  ·𝑠  ‘ ndx ) | 
						
							| 35 | 31 7 | cfv | ⊢ ( Base ‘ ( Scalar ‘ 𝑚 ) ) | 
						
							| 36 | 3 7 | cfv | ⊢ ( Base ‘ 𝑚 ) | 
						
							| 37 | 16 | csn | ⊢ { 𝑥 } | 
						
							| 38 | 36 37 | cxp | ⊢ ( ( Base ‘ 𝑚 )  ×  { 𝑥 } ) | 
						
							| 39 | 3 33 | cfv | ⊢ (  ·𝑠  ‘ 𝑚 ) | 
						
							| 40 | 39 | cof | ⊢  ∘f  (  ·𝑠  ‘ 𝑚 ) | 
						
							| 41 | 38 19 40 | co | ⊢ ( ( ( Base ‘ 𝑚 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑚 ) 𝑦 ) | 
						
							| 42 | 14 15 35 10 41 | cmpo | ⊢ ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑚 ) ) ,  𝑦  ∈  𝑏  ↦  ( ( ( Base ‘ 𝑚 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑚 ) 𝑦 ) ) | 
						
							| 43 | 34 42 | cop | ⊢ 〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑚 ) ) ,  𝑦  ∈  𝑏  ↦  ( ( ( Base ‘ 𝑚 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑚 ) 𝑦 ) ) 〉 | 
						
							| 44 | 32 43 | cpr | ⊢ { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑚 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑚 ) ) ,  𝑦  ∈  𝑏  ↦  ( ( ( Base ‘ 𝑚 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑚 ) 𝑦 ) ) 〉 } | 
						
							| 45 | 28 44 | cun | ⊢ ( { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑚 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑚 ) ) ,  𝑦  ∈  𝑏  ↦  ( ( ( Base ‘ 𝑚 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑚 ) 𝑦 ) ) 〉 } ) | 
						
							| 46 | 6 5 45 | csb | ⊢ ⦋ ( 𝑚  LMHom  𝑚 )  /  𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑚 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑚 ) ) ,  𝑦  ∈  𝑏  ↦  ( ( ( Base ‘ 𝑚 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑚 ) 𝑦 ) ) 〉 } ) | 
						
							| 47 | 1 2 46 | cmpt | ⊢ ( 𝑚  ∈  V  ↦  ⦋ ( 𝑚  LMHom  𝑚 )  /  𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑚 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑚 ) ) ,  𝑦  ∈  𝑏  ↦  ( ( ( Base ‘ 𝑚 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑚 ) 𝑦 ) ) 〉 } ) ) | 
						
							| 48 | 0 47 | wceq | ⊢ MEndo  =  ( 𝑚  ∈  V  ↦  ⦋ ( 𝑚  LMHom  𝑚 )  /  𝑏 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑏 〉 ,  〈 ( +g ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘f  ( +g ‘ 𝑚 ) 𝑦 ) ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( 𝑥  ∈  𝑏 ,  𝑦  ∈  𝑏  ↦  ( 𝑥  ∘  𝑦 ) ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  ( Scalar ‘ 𝑚 ) 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( Scalar ‘ 𝑚 ) ) ,  𝑦  ∈  𝑏  ↦  ( ( ( Base ‘ 𝑚 )  ×  { 𝑥 } )  ∘f  (  ·𝑠  ‘ 𝑚 ) 𝑦 ) ) 〉 } ) ) |