Description: Define the syntax typecode function for expressions. (Contributed by Mario Carneiro, 12-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | df-mesyn | |- mESyn = ( t e. _V |-> ( c e. ( mTC ` t ) , e e. ( mREx ` t ) |-> ( ( ( mSyn ` t ) ` c ) m0St e ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cmesy | |- mESyn |
|
1 | vt | |- t |
|
2 | cvv | |- _V |
|
3 | vc | |- c |
|
4 | cmtc | |- mTC |
|
5 | 1 | cv | |- t |
6 | 5 4 | cfv | |- ( mTC ` t ) |
7 | ve | |- e |
|
8 | cmrex | |- mREx |
|
9 | 5 8 | cfv | |- ( mREx ` t ) |
10 | cmsy | |- mSyn |
|
11 | 5 10 | cfv | |- ( mSyn ` t ) |
12 | 3 | cv | |- c |
13 | 12 11 | cfv | |- ( ( mSyn ` t ) ` c ) |
14 | cm0s | |- m0St |
|
15 | 7 | cv | |- e |
16 | 13 15 14 | co | |- ( ( ( mSyn ` t ) ` c ) m0St e ) |
17 | 3 7 6 9 16 | cmpo | |- ( c e. ( mTC ` t ) , e e. ( mREx ` t ) |-> ( ( ( mSyn ` t ) ` c ) m0St e ) ) |
18 | 1 2 17 | cmpt | |- ( t e. _V |-> ( c e. ( mTC ` t ) , e e. ( mREx ` t ) |-> ( ( ( mSyn ` t ) ` c ) m0St e ) ) ) |
19 | 0 18 | wceq | |- mESyn = ( t e. _V |-> ( c e. ( mTC ` t ) , e e. ( mREx ` t ) |-> ( ( ( mSyn ` t ) ` c ) m0St e ) ) ) |