Metamath Proof Explorer


Definition df-mesyn

Description: Define the syntax typecode function for expressions. (Contributed by Mario Carneiro, 12-Jun-2023)

Ref Expression
Assertion df-mesyn
|- mESyn = ( t e. _V |-> ( c e. ( mTC ` t ) , e e. ( mREx ` t ) |-> ( ( ( mSyn ` t ) ` c ) m0St e ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmesy
 |-  mESyn
1 vt
 |-  t
2 cvv
 |-  _V
3 vc
 |-  c
4 cmtc
 |-  mTC
5 1 cv
 |-  t
6 5 4 cfv
 |-  ( mTC ` t )
7 ve
 |-  e
8 cmrex
 |-  mREx
9 5 8 cfv
 |-  ( mREx ` t )
10 cmsy
 |-  mSyn
11 5 10 cfv
 |-  ( mSyn ` t )
12 3 cv
 |-  c
13 12 11 cfv
 |-  ( ( mSyn ` t ) ` c )
14 cm0s
 |-  m0St
15 7 cv
 |-  e
16 13 15 14 co
 |-  ( ( ( mSyn ` t ) ` c ) m0St e )
17 3 7 6 9 16 cmpo
 |-  ( c e. ( mTC ` t ) , e e. ( mREx ` t ) |-> ( ( ( mSyn ` t ) ` c ) m0St e ) )
18 1 2 17 cmpt
 |-  ( t e. _V |-> ( c e. ( mTC ` t ) , e e. ( mREx ` t ) |-> ( ( ( mSyn ` t ) ` c ) m0St e ) ) )
19 0 18 wceq
 |-  mESyn = ( t e. _V |-> ( c e. ( mTC ` t ) , e e. ( mREx ` t ) |-> ( ( ( mSyn ` t ) ` c ) m0St e ) ) )