Metamath Proof Explorer


Definition df-mesyn

Description: Define the syntax typecode function for expressions. (Contributed by Mario Carneiro, 12-Jun-2023)

Ref Expression
Assertion df-mesyn mESyn = ( 𝑡 ∈ V ↦ ( 𝑐 ∈ ( mTC ‘ 𝑡 ) , 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) m0St 𝑒 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmesy mESyn
1 vt 𝑡
2 cvv V
3 vc 𝑐
4 cmtc mTC
5 1 cv 𝑡
6 5 4 cfv ( mTC ‘ 𝑡 )
7 ve 𝑒
8 cmrex mREx
9 5 8 cfv ( mREx ‘ 𝑡 )
10 cmsy mSyn
11 5 10 cfv ( mSyn ‘ 𝑡 )
12 3 cv 𝑐
13 12 11 cfv ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 )
14 cm0s m0St
15 7 cv 𝑒
16 13 15 14 co ( ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) m0St 𝑒 )
17 3 7 6 9 16 cmpo ( 𝑐 ∈ ( mTC ‘ 𝑡 ) , 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) m0St 𝑒 ) )
18 1 2 17 cmpt ( 𝑡 ∈ V ↦ ( 𝑐 ∈ ( mTC ‘ 𝑡 ) , 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) m0St 𝑒 ) ) )
19 0 18 wceq mESyn = ( 𝑡 ∈ V ↦ ( 𝑐 ∈ ( mTC ‘ 𝑡 ) , 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) m0St 𝑒 ) ) )