| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmesy |
⊢ mESyn |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vc |
⊢ 𝑐 |
| 4 |
|
cmtc |
⊢ mTC |
| 5 |
1
|
cv |
⊢ 𝑡 |
| 6 |
5 4
|
cfv |
⊢ ( mTC ‘ 𝑡 ) |
| 7 |
|
ve |
⊢ 𝑒 |
| 8 |
|
cmrex |
⊢ mREx |
| 9 |
5 8
|
cfv |
⊢ ( mREx ‘ 𝑡 ) |
| 10 |
|
cmsy |
⊢ mSyn |
| 11 |
5 10
|
cfv |
⊢ ( mSyn ‘ 𝑡 ) |
| 12 |
3
|
cv |
⊢ 𝑐 |
| 13 |
12 11
|
cfv |
⊢ ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) |
| 14 |
|
cm0s |
⊢ m0St |
| 15 |
7
|
cv |
⊢ 𝑒 |
| 16 |
13 15 14
|
co |
⊢ ( ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) m0St 𝑒 ) |
| 17 |
3 7 6 9 16
|
cmpo |
⊢ ( 𝑐 ∈ ( mTC ‘ 𝑡 ) , 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) m0St 𝑒 ) ) |
| 18 |
1 2 17
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( 𝑐 ∈ ( mTC ‘ 𝑡 ) , 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) m0St 𝑒 ) ) ) |
| 19 |
0 18
|
wceq |
⊢ mESyn = ( 𝑡 ∈ V ↦ ( 𝑐 ∈ ( mTC ‘ 𝑡 ) , 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) m0St 𝑒 ) ) ) |