Metamath Proof Explorer


Definition df-mgfs

Description: Define the set of grammatical formal systems. (Contributed by Mario Carneiro, 12-Jun-2023)

Ref Expression
Assertion df-mgfs mGFS = { 𝑡 ∈ mWGFS ∣ ( ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 ) ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) = 𝑐 ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmgfs mGFS
1 vt 𝑡
2 cmwgfs mWGFS
3 cmsy mSyn
4 1 cv 𝑡
5 4 3 cfv ( mSyn ‘ 𝑡 )
6 cmtc mTC
7 4 6 cfv ( mTC ‘ 𝑡 )
8 cmvt mVT
9 4 8 cfv ( mVT ‘ 𝑡 )
10 7 9 5 wf ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 )
11 vc 𝑐
12 11 cv 𝑐
13 12 5 cfv ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 )
14 13 12 wceq ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) = 𝑐
15 14 11 9 wral 𝑐 ∈ ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) = 𝑐
16 vd 𝑑
17 vh
18 va 𝑎
19 16 cv 𝑑
20 17 cv
21 18 cv 𝑎
22 19 20 21 cotp 𝑑 , , 𝑎
23 cmax mAx
24 4 23 cfv ( mAx ‘ 𝑡 )
25 22 24 wcel 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 )
26 ve 𝑒
27 21 csn { 𝑎 }
28 20 27 cun ( ∪ { 𝑎 } )
29 cmesy mESyn
30 4 29 cfv ( mESyn ‘ 𝑡 )
31 26 cv 𝑒
32 31 30 cfv ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )
33 cmpps mPPSt
34 4 33 cfv ( mPPSt ‘ 𝑡 )
35 32 34 wcel ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 )
36 35 26 28 wral 𝑒 ∈ ( ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 )
37 25 36 wi ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) )
38 37 18 wal 𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) )
39 38 17 wal 𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) )
40 39 16 wal 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) )
41 10 15 40 w3a ( ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 ) ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) = 𝑐 ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) ) )
42 41 1 2 crab { 𝑡 ∈ mWGFS ∣ ( ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 ) ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) = 𝑐 ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) ) ) }
43 0 42 wceq mGFS = { 𝑡 ∈ mWGFS ∣ ( ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 ) ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) = 𝑐 ∧ ∀ 𝑑𝑎 ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) ) ) }