| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmgfs |
⊢ mGFS |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cmwgfs |
⊢ mWGFS |
| 3 |
|
cmsy |
⊢ mSyn |
| 4 |
1
|
cv |
⊢ 𝑡 |
| 5 |
4 3
|
cfv |
⊢ ( mSyn ‘ 𝑡 ) |
| 6 |
|
cmtc |
⊢ mTC |
| 7 |
4 6
|
cfv |
⊢ ( mTC ‘ 𝑡 ) |
| 8 |
|
cmvt |
⊢ mVT |
| 9 |
4 8
|
cfv |
⊢ ( mVT ‘ 𝑡 ) |
| 10 |
7 9 5
|
wf |
⊢ ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 ) |
| 11 |
|
vc |
⊢ 𝑐 |
| 12 |
11
|
cv |
⊢ 𝑐 |
| 13 |
12 5
|
cfv |
⊢ ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) |
| 14 |
13 12
|
wceq |
⊢ ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) = 𝑐 |
| 15 |
14 11 9
|
wral |
⊢ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) = 𝑐 |
| 16 |
|
vd |
⊢ 𝑑 |
| 17 |
|
vh |
⊢ ℎ |
| 18 |
|
va |
⊢ 𝑎 |
| 19 |
16
|
cv |
⊢ 𝑑 |
| 20 |
17
|
cv |
⊢ ℎ |
| 21 |
18
|
cv |
⊢ 𝑎 |
| 22 |
19 20 21
|
cotp |
⊢ 〈 𝑑 , ℎ , 𝑎 〉 |
| 23 |
|
cmax |
⊢ mAx |
| 24 |
4 23
|
cfv |
⊢ ( mAx ‘ 𝑡 ) |
| 25 |
22 24
|
wcel |
⊢ 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) |
| 26 |
|
ve |
⊢ 𝑒 |
| 27 |
21
|
csn |
⊢ { 𝑎 } |
| 28 |
20 27
|
cun |
⊢ ( ℎ ∪ { 𝑎 } ) |
| 29 |
|
cmesy |
⊢ mESyn |
| 30 |
4 29
|
cfv |
⊢ ( mESyn ‘ 𝑡 ) |
| 31 |
26
|
cv |
⊢ 𝑒 |
| 32 |
31 30
|
cfv |
⊢ ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) |
| 33 |
|
cmpps |
⊢ mPPSt |
| 34 |
4 33
|
cfv |
⊢ ( mPPSt ‘ 𝑡 ) |
| 35 |
32 34
|
wcel |
⊢ ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) |
| 36 |
35 26 28
|
wral |
⊢ ∀ 𝑒 ∈ ( ℎ ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) |
| 37 |
25 36
|
wi |
⊢ ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ℎ ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) ) |
| 38 |
37 18
|
wal |
⊢ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ℎ ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) ) |
| 39 |
38 17
|
wal |
⊢ ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ℎ ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) ) |
| 40 |
39 16
|
wal |
⊢ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ℎ ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) ) |
| 41 |
10 15 40
|
w3a |
⊢ ( ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 ) ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) = 𝑐 ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ℎ ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) ) ) |
| 42 |
41 1 2
|
crab |
⊢ { 𝑡 ∈ mWGFS ∣ ( ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 ) ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) = 𝑐 ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ℎ ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) ) ) } |
| 43 |
0 42
|
wceq |
⊢ mGFS = { 𝑡 ∈ mWGFS ∣ ( ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 ) ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 ) = 𝑐 ∧ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑒 ∈ ( ℎ ∪ { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 ) ∈ ( mPPSt ‘ 𝑡 ) ) ) } |