| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cmgfs | 
							⊢ mGFS  | 
						
						
							| 1 | 
							
								
							 | 
							vt | 
							⊢ 𝑡  | 
						
						
							| 2 | 
							
								
							 | 
							cmwgfs | 
							⊢ mWGFS  | 
						
						
							| 3 | 
							
								
							 | 
							cmsy | 
							⊢ mSyn  | 
						
						
							| 4 | 
							
								1
							 | 
							cv | 
							⊢ 𝑡  | 
						
						
							| 5 | 
							
								4 3
							 | 
							cfv | 
							⊢ ( mSyn ‘ 𝑡 )  | 
						
						
							| 6 | 
							
								
							 | 
							cmtc | 
							⊢ mTC  | 
						
						
							| 7 | 
							
								4 6
							 | 
							cfv | 
							⊢ ( mTC ‘ 𝑡 )  | 
						
						
							| 8 | 
							
								
							 | 
							cmvt | 
							⊢ mVT  | 
						
						
							| 9 | 
							
								4 8
							 | 
							cfv | 
							⊢ ( mVT ‘ 𝑡 )  | 
						
						
							| 10 | 
							
								7 9 5
							 | 
							wf | 
							⊢ ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 )  | 
						
						
							| 11 | 
							
								
							 | 
							vc | 
							⊢ 𝑐  | 
						
						
							| 12 | 
							
								11
							 | 
							cv | 
							⊢ 𝑐  | 
						
						
							| 13 | 
							
								12 5
							 | 
							cfv | 
							⊢ ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 )  | 
						
						
							| 14 | 
							
								13 12
							 | 
							wceq | 
							⊢ ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 )  =  𝑐  | 
						
						
							| 15 | 
							
								14 11 9
							 | 
							wral | 
							⊢ ∀ 𝑐  ∈  ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 )  =  𝑐  | 
						
						
							| 16 | 
							
								
							 | 
							vd | 
							⊢ 𝑑  | 
						
						
							| 17 | 
							
								
							 | 
							vh | 
							⊢ ℎ  | 
						
						
							| 18 | 
							
								
							 | 
							va | 
							⊢ 𝑎  | 
						
						
							| 19 | 
							
								16
							 | 
							cv | 
							⊢ 𝑑  | 
						
						
							| 20 | 
							
								17
							 | 
							cv | 
							⊢ ℎ  | 
						
						
							| 21 | 
							
								18
							 | 
							cv | 
							⊢ 𝑎  | 
						
						
							| 22 | 
							
								19 20 21
							 | 
							cotp | 
							⊢ 〈 𝑑 ,  ℎ ,  𝑎 〉  | 
						
						
							| 23 | 
							
								
							 | 
							cmax | 
							⊢ mAx  | 
						
						
							| 24 | 
							
								4 23
							 | 
							cfv | 
							⊢ ( mAx ‘ 𝑡 )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							wcel | 
							⊢ 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  | 
						
						
							| 26 | 
							
								
							 | 
							ve | 
							⊢ 𝑒  | 
						
						
							| 27 | 
							
								21
							 | 
							csn | 
							⊢ { 𝑎 }  | 
						
						
							| 28 | 
							
								20 27
							 | 
							cun | 
							⊢ ( ℎ  ∪  { 𝑎 } )  | 
						
						
							| 29 | 
							
								
							 | 
							cmesy | 
							⊢ mESyn  | 
						
						
							| 30 | 
							
								4 29
							 | 
							cfv | 
							⊢ ( mESyn ‘ 𝑡 )  | 
						
						
							| 31 | 
							
								26
							 | 
							cv | 
							⊢ 𝑒  | 
						
						
							| 32 | 
							
								31 30
							 | 
							cfv | 
							⊢ ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )  | 
						
						
							| 33 | 
							
								
							 | 
							cmpps | 
							⊢ mPPSt  | 
						
						
							| 34 | 
							
								4 33
							 | 
							cfv | 
							⊢ ( mPPSt ‘ 𝑡 )  | 
						
						
							| 35 | 
							
								32 34
							 | 
							wcel | 
							⊢ ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )  ∈  ( mPPSt ‘ 𝑡 )  | 
						
						
							| 36 | 
							
								35 26 28
							 | 
							wral | 
							⊢ ∀ 𝑒  ∈  ( ℎ  ∪  { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )  ∈  ( mPPSt ‘ 𝑡 )  | 
						
						
							| 37 | 
							
								25 36
							 | 
							wi | 
							⊢ ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑒  ∈  ( ℎ  ∪  { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )  ∈  ( mPPSt ‘ 𝑡 ) )  | 
						
						
							| 38 | 
							
								37 18
							 | 
							wal | 
							⊢ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑒  ∈  ( ℎ  ∪  { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )  ∈  ( mPPSt ‘ 𝑡 ) )  | 
						
						
							| 39 | 
							
								38 17
							 | 
							wal | 
							⊢ ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑒  ∈  ( ℎ  ∪  { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )  ∈  ( mPPSt ‘ 𝑡 ) )  | 
						
						
							| 40 | 
							
								39 16
							 | 
							wal | 
							⊢ ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑒  ∈  ( ℎ  ∪  { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )  ∈  ( mPPSt ‘ 𝑡 ) )  | 
						
						
							| 41 | 
							
								10 15 40
							 | 
							w3a | 
							⊢ ( ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 )  ∧  ∀ 𝑐  ∈  ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 )  =  𝑐  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑒  ∈  ( ℎ  ∪  { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )  ∈  ( mPPSt ‘ 𝑡 ) ) )  | 
						
						
							| 42 | 
							
								41 1 2
							 | 
							crab | 
							⊢ { 𝑡  ∈  mWGFS  ∣  ( ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 )  ∧  ∀ 𝑐  ∈  ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 )  =  𝑐  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑒  ∈  ( ℎ  ∪  { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )  ∈  ( mPPSt ‘ 𝑡 ) ) ) }  | 
						
						
							| 43 | 
							
								0 42
							 | 
							wceq | 
							⊢ mGFS  =  { 𝑡  ∈  mWGFS  ∣  ( ( mSyn ‘ 𝑡 ) : ( mTC ‘ 𝑡 ) ⟶ ( mVT ‘ 𝑡 )  ∧  ∀ 𝑐  ∈  ( mVT ‘ 𝑡 ) ( ( mSyn ‘ 𝑡 ) ‘ 𝑐 )  =  𝑐  ∧  ∀ 𝑑 ∀ ℎ ∀ 𝑎 ( 〈 𝑑 ,  ℎ ,  𝑎 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑒  ∈  ( ℎ  ∪  { 𝑎 } ) ( ( mESyn ‘ 𝑡 ) ‘ 𝑒 )  ∈  ( mPPSt ‘ 𝑡 ) ) ) }  |