Metamath Proof Explorer


Definition df-mgfs

Description: Define the set of grammatical formal systems. (Contributed by Mario Carneiro, 12-Jun-2023)

Ref Expression
Assertion df-mgfs mGFS=tmWGFS|mSynt:mTCtmVTtcmVTtmSyntc=cdhadhamAxtehamESyntemPPStt

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmgfs classmGFS
1 vt setvart
2 cmwgfs classmWGFS
3 cmsy classmSyn
4 1 cv setvart
5 4 3 cfv classmSynt
6 cmtc classmTC
7 4 6 cfv classmTCt
8 cmvt classmVT
9 4 8 cfv classmVTt
10 7 9 5 wf wffmSynt:mTCtmVTt
11 vc setvarc
12 11 cv setvarc
13 12 5 cfv classmSyntc
14 13 12 wceq wffmSyntc=c
15 14 11 9 wral wffcmVTtmSyntc=c
16 vd setvard
17 vh setvarh
18 va setvara
19 16 cv setvard
20 17 cv setvarh
21 18 cv setvara
22 19 20 21 cotp classdha
23 cmax classmAx
24 4 23 cfv classmAxt
25 22 24 wcel wffdhamAxt
26 ve setvare
27 21 csn classa
28 20 27 cun classha
29 cmesy classmESyn
30 4 29 cfv classmESynt
31 26 cv setvare
32 31 30 cfv classmESynte
33 cmpps classmPPSt
34 4 33 cfv classmPPStt
35 32 34 wcel wffmESyntemPPStt
36 35 26 28 wral wffehamESyntemPPStt
37 25 36 wi wffdhamAxtehamESyntemPPStt
38 37 18 wal wffadhamAxtehamESyntemPPStt
39 38 17 wal wffhadhamAxtehamESyntemPPStt
40 39 16 wal wffdhadhamAxtehamESyntemPPStt
41 10 15 40 w3a wffmSynt:mTCtmVTtcmVTtmSyntc=cdhadhamAxtehamESyntemPPStt
42 41 1 2 crab classtmWGFS|mSynt:mTCtmVTtcmVTtmSyntc=cdhadhamAxtehamESyntemPPStt
43 0 42 wceq wffmGFS=tmWGFS|mSynt:mTCtmVTtcmVTtmSyntc=cdhadhamAxtehamESyntemPPStt