Step |
Hyp |
Ref |
Expression |
0 |
|
cmtree |
⊢ mTree |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cvv |
⊢ V |
3 |
|
vd |
⊢ 𝑑 |
4 |
|
cmdv |
⊢ mDV |
5 |
1
|
cv |
⊢ 𝑡 |
6 |
5 4
|
cfv |
⊢ ( mDV ‘ 𝑡 ) |
7 |
6
|
cpw |
⊢ 𝒫 ( mDV ‘ 𝑡 ) |
8 |
|
vh |
⊢ ℎ |
9 |
|
cmex |
⊢ mEx |
10 |
5 9
|
cfv |
⊢ ( mEx ‘ 𝑡 ) |
11 |
10
|
cpw |
⊢ 𝒫 ( mEx ‘ 𝑡 ) |
12 |
|
vr |
⊢ 𝑟 |
13 |
|
ve |
⊢ 𝑒 |
14 |
|
cmvh |
⊢ mVH |
15 |
5 14
|
cfv |
⊢ ( mVH ‘ 𝑡 ) |
16 |
15
|
crn |
⊢ ran ( mVH ‘ 𝑡 ) |
17 |
13
|
cv |
⊢ 𝑒 |
18 |
12
|
cv |
⊢ 𝑟 |
19 |
|
cm0s |
⊢ m0St |
20 |
17 19
|
cfv |
⊢ ( m0St ‘ 𝑒 ) |
21 |
|
c0 |
⊢ ∅ |
22 |
20 21
|
cop |
⊢ 〈 ( m0St ‘ 𝑒 ) , ∅ 〉 |
23 |
17 22 18
|
wbr |
⊢ 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) , ∅ 〉 |
24 |
23 13 16
|
wral |
⊢ ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) , ∅ 〉 |
25 |
8
|
cv |
⊢ ℎ |
26 |
|
cmsr |
⊢ mStRed |
27 |
5 26
|
cfv |
⊢ ( mStRed ‘ 𝑡 ) |
28 |
3
|
cv |
⊢ 𝑑 |
29 |
28 25 17
|
cotp |
⊢ 〈 𝑑 , ℎ , 𝑒 〉 |
30 |
29 27
|
cfv |
⊢ ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 , ℎ , 𝑒 〉 ) |
31 |
30 21
|
cop |
⊢ 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 , ℎ , 𝑒 〉 ) , ∅ 〉 |
32 |
17 31 18
|
wbr |
⊢ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 , ℎ , 𝑒 〉 ) , ∅ 〉 |
33 |
32 13 25
|
wral |
⊢ ∀ 𝑒 ∈ ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 , ℎ , 𝑒 〉 ) , ∅ 〉 |
34 |
|
vm |
⊢ 𝑚 |
35 |
|
vo |
⊢ 𝑜 |
36 |
|
vp |
⊢ 𝑝 |
37 |
34
|
cv |
⊢ 𝑚 |
38 |
35
|
cv |
⊢ 𝑜 |
39 |
36
|
cv |
⊢ 𝑝 |
40 |
37 38 39
|
cotp |
⊢ 〈 𝑚 , 𝑜 , 𝑝 〉 |
41 |
|
cmax |
⊢ mAx |
42 |
5 41
|
cfv |
⊢ ( mAx ‘ 𝑡 ) |
43 |
40 42
|
wcel |
⊢ 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) |
44 |
|
vs |
⊢ 𝑠 |
45 |
|
cmsub |
⊢ mSubst |
46 |
5 45
|
cfv |
⊢ ( mSubst ‘ 𝑡 ) |
47 |
46
|
crn |
⊢ ran ( mSubst ‘ 𝑡 ) |
48 |
|
vx |
⊢ 𝑥 |
49 |
|
vy |
⊢ 𝑦 |
50 |
48
|
cv |
⊢ 𝑥 |
51 |
49
|
cv |
⊢ 𝑦 |
52 |
50 51 37
|
wbr |
⊢ 𝑥 𝑚 𝑦 |
53 |
|
cmvrs |
⊢ mVars |
54 |
5 53
|
cfv |
⊢ ( mVars ‘ 𝑡 ) |
55 |
44
|
cv |
⊢ 𝑠 |
56 |
50 15
|
cfv |
⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) |
57 |
56 55
|
cfv |
⊢ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) |
58 |
57 54
|
cfv |
⊢ ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) |
59 |
51 15
|
cfv |
⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) |
60 |
59 55
|
cfv |
⊢ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) |
61 |
60 54
|
cfv |
⊢ ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) |
62 |
58 61
|
cxp |
⊢ ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) |
63 |
62 28
|
wss |
⊢ ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 |
64 |
52 63
|
wi |
⊢ ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) |
65 |
64 49
|
wal |
⊢ ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) |
66 |
65 48
|
wal |
⊢ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) |
67 |
39 55
|
cfv |
⊢ ( 𝑠 ‘ 𝑝 ) |
68 |
67
|
csn |
⊢ { ( 𝑠 ‘ 𝑝 ) } |
69 |
39
|
csn |
⊢ { 𝑝 } |
70 |
38 69
|
cun |
⊢ ( 𝑜 ∪ { 𝑝 } ) |
71 |
54 70
|
cima |
⊢ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) |
72 |
71
|
cuni |
⊢ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) |
73 |
15 72
|
cima |
⊢ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) |
74 |
38 73
|
cun |
⊢ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) |
75 |
17 55
|
cfv |
⊢ ( 𝑠 ‘ 𝑒 ) |
76 |
75
|
csn |
⊢ { ( 𝑠 ‘ 𝑒 ) } |
77 |
18 76
|
cima |
⊢ ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) |
78 |
13 74 77
|
cixp |
⊢ X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) |
79 |
68 78
|
cxp |
⊢ ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) |
80 |
79 18
|
wss |
⊢ ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 |
81 |
66 80
|
wi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 ) |
82 |
81 44 47
|
wral |
⊢ ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 ) |
83 |
43 82
|
wi |
⊢ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 ) ) |
84 |
83 36
|
wal |
⊢ ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 ) ) |
85 |
84 35
|
wal |
⊢ ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 ) ) |
86 |
85 34
|
wal |
⊢ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 ) ) |
87 |
24 33 86
|
w3a |
⊢ ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) , ∅ 〉 ∧ ∀ 𝑒 ∈ ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 , ℎ , 𝑒 〉 ) , ∅ 〉 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 ) ) ) |
88 |
87 12
|
cab |
⊢ { 𝑟 ∣ ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) , ∅ 〉 ∧ ∀ 𝑒 ∈ ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 , ℎ , 𝑒 〉 ) , ∅ 〉 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 ) ) ) } |
89 |
88
|
cint |
⊢ ∩ { 𝑟 ∣ ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) , ∅ 〉 ∧ ∀ 𝑒 ∈ ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 , ℎ , 𝑒 〉 ) , ∅ 〉 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 ) ) ) } |
90 |
3 8 7 11 89
|
cmpo |
⊢ ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ℎ ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ ∩ { 𝑟 ∣ ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) , ∅ 〉 ∧ ∀ 𝑒 ∈ ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 , ℎ , 𝑒 〉 ) , ∅ 〉 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 ) ) ) } ) |
91 |
1 2 90
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ℎ ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ ∩ { 𝑟 ∣ ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) , ∅ 〉 ∧ ∀ 𝑒 ∈ ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 , ℎ , 𝑒 〉 ) , ∅ 〉 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 ) ) ) } ) ) |
92 |
0 91
|
wceq |
⊢ mTree = ( 𝑡 ∈ V ↦ ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ℎ ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ ∩ { 𝑟 ∣ ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) , ∅ 〉 ∧ ∀ 𝑒 ∈ ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 , ℎ , 𝑒 〉 ) , ∅ 〉 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠 ‘ 𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ∪ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠 ‘ 𝑒 ) } ) ) ⊆ 𝑟 ) ) ) } ) ) |