| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cmtree | 
							⊢ mTree  | 
						
						
							| 1 | 
							
								
							 | 
							vt | 
							⊢ 𝑡  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							⊢ V  | 
						
						
							| 3 | 
							
								
							 | 
							vd | 
							⊢ 𝑑  | 
						
						
							| 4 | 
							
								
							 | 
							cmdv | 
							⊢ mDV  | 
						
						
							| 5 | 
							
								1
							 | 
							cv | 
							⊢ 𝑡  | 
						
						
							| 6 | 
							
								5 4
							 | 
							cfv | 
							⊢ ( mDV ‘ 𝑡 )  | 
						
						
							| 7 | 
							
								6
							 | 
							cpw | 
							⊢ 𝒫  ( mDV ‘ 𝑡 )  | 
						
						
							| 8 | 
							
								
							 | 
							vh | 
							⊢ ℎ  | 
						
						
							| 9 | 
							
								
							 | 
							cmex | 
							⊢ mEx  | 
						
						
							| 10 | 
							
								5 9
							 | 
							cfv | 
							⊢ ( mEx ‘ 𝑡 )  | 
						
						
							| 11 | 
							
								10
							 | 
							cpw | 
							⊢ 𝒫  ( mEx ‘ 𝑡 )  | 
						
						
							| 12 | 
							
								
							 | 
							vr | 
							⊢ 𝑟  | 
						
						
							| 13 | 
							
								
							 | 
							ve | 
							⊢ 𝑒  | 
						
						
							| 14 | 
							
								
							 | 
							cmvh | 
							⊢ mVH  | 
						
						
							| 15 | 
							
								5 14
							 | 
							cfv | 
							⊢ ( mVH ‘ 𝑡 )  | 
						
						
							| 16 | 
							
								15
							 | 
							crn | 
							⊢ ran  ( mVH ‘ 𝑡 )  | 
						
						
							| 17 | 
							
								13
							 | 
							cv | 
							⊢ 𝑒  | 
						
						
							| 18 | 
							
								12
							 | 
							cv | 
							⊢ 𝑟  | 
						
						
							| 19 | 
							
								
							 | 
							cm0s | 
							⊢ m0St  | 
						
						
							| 20 | 
							
								17 19
							 | 
							cfv | 
							⊢ ( m0St ‘ 𝑒 )  | 
						
						
							| 21 | 
							
								
							 | 
							c0 | 
							⊢ ∅  | 
						
						
							| 22 | 
							
								20 21
							 | 
							cop | 
							⊢ 〈 ( m0St ‘ 𝑒 ) ,  ∅ 〉  | 
						
						
							| 23 | 
							
								17 22 18
							 | 
							wbr | 
							⊢ 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) ,  ∅ 〉  | 
						
						
							| 24 | 
							
								23 13 16
							 | 
							wral | 
							⊢ ∀ 𝑒  ∈  ran  ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) ,  ∅ 〉  | 
						
						
							| 25 | 
							
								8
							 | 
							cv | 
							⊢ ℎ  | 
						
						
							| 26 | 
							
								
							 | 
							cmsr | 
							⊢ mStRed  | 
						
						
							| 27 | 
							
								5 26
							 | 
							cfv | 
							⊢ ( mStRed ‘ 𝑡 )  | 
						
						
							| 28 | 
							
								3
							 | 
							cv | 
							⊢ 𝑑  | 
						
						
							| 29 | 
							
								28 25 17
							 | 
							cotp | 
							⊢ 〈 𝑑 ,  ℎ ,  𝑒 〉  | 
						
						
							| 30 | 
							
								29 27
							 | 
							cfv | 
							⊢ ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 ,  ℎ ,  𝑒 〉 )  | 
						
						
							| 31 | 
							
								30 21
							 | 
							cop | 
							⊢ 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 ,  ℎ ,  𝑒 〉 ) ,  ∅ 〉  | 
						
						
							| 32 | 
							
								17 31 18
							 | 
							wbr | 
							⊢ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 ,  ℎ ,  𝑒 〉 ) ,  ∅ 〉  | 
						
						
							| 33 | 
							
								32 13 25
							 | 
							wral | 
							⊢ ∀ 𝑒  ∈  ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 ,  ℎ ,  𝑒 〉 ) ,  ∅ 〉  | 
						
						
							| 34 | 
							
								
							 | 
							vm | 
							⊢ 𝑚  | 
						
						
							| 35 | 
							
								
							 | 
							vo | 
							⊢ 𝑜  | 
						
						
							| 36 | 
							
								
							 | 
							vp | 
							⊢ 𝑝  | 
						
						
							| 37 | 
							
								34
							 | 
							cv | 
							⊢ 𝑚  | 
						
						
							| 38 | 
							
								35
							 | 
							cv | 
							⊢ 𝑜  | 
						
						
							| 39 | 
							
								36
							 | 
							cv | 
							⊢ 𝑝  | 
						
						
							| 40 | 
							
								37 38 39
							 | 
							cotp | 
							⊢ 〈 𝑚 ,  𝑜 ,  𝑝 〉  | 
						
						
							| 41 | 
							
								
							 | 
							cmax | 
							⊢ mAx  | 
						
						
							| 42 | 
							
								5 41
							 | 
							cfv | 
							⊢ ( mAx ‘ 𝑡 )  | 
						
						
							| 43 | 
							
								40 42
							 | 
							wcel | 
							⊢ 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑡 )  | 
						
						
							| 44 | 
							
								
							 | 
							vs | 
							⊢ 𝑠  | 
						
						
							| 45 | 
							
								
							 | 
							cmsub | 
							⊢ mSubst  | 
						
						
							| 46 | 
							
								5 45
							 | 
							cfv | 
							⊢ ( mSubst ‘ 𝑡 )  | 
						
						
							| 47 | 
							
								46
							 | 
							crn | 
							⊢ ran  ( mSubst ‘ 𝑡 )  | 
						
						
							| 48 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 49 | 
							
								
							 | 
							vy | 
							⊢ 𝑦  | 
						
						
							| 50 | 
							
								48
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 51 | 
							
								49
							 | 
							cv | 
							⊢ 𝑦  | 
						
						
							| 52 | 
							
								50 51 37
							 | 
							wbr | 
							⊢ 𝑥 𝑚 𝑦  | 
						
						
							| 53 | 
							
								
							 | 
							cmvrs | 
							⊢ mVars  | 
						
						
							| 54 | 
							
								5 53
							 | 
							cfv | 
							⊢ ( mVars ‘ 𝑡 )  | 
						
						
							| 55 | 
							
								44
							 | 
							cv | 
							⊢ 𝑠  | 
						
						
							| 56 | 
							
								50 15
							 | 
							cfv | 
							⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 )  | 
						
						
							| 57 | 
							
								56 55
							 | 
							cfv | 
							⊢ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) )  | 
						
						
							| 58 | 
							
								57 54
							 | 
							cfv | 
							⊢ ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  | 
						
						
							| 59 | 
							
								51 15
							 | 
							cfv | 
							⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 )  | 
						
						
							| 60 | 
							
								59 55
							 | 
							cfv | 
							⊢ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) )  | 
						
						
							| 61 | 
							
								60 54
							 | 
							cfv | 
							⊢ ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) )  | 
						
						
							| 62 | 
							
								58 61
							 | 
							cxp | 
							⊢ ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  | 
						
						
							| 63 | 
							
								62 28
							 | 
							wss | 
							⊢ ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑  | 
						
						
							| 64 | 
							
								52 63
							 | 
							wi | 
							⊢ ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  | 
						
						
							| 65 | 
							
								64 49
							 | 
							wal | 
							⊢ ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  | 
						
						
							| 66 | 
							
								65 48
							 | 
							wal | 
							⊢ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  | 
						
						
							| 67 | 
							
								39 55
							 | 
							cfv | 
							⊢ ( 𝑠 ‘ 𝑝 )  | 
						
						
							| 68 | 
							
								67
							 | 
							csn | 
							⊢ { ( 𝑠 ‘ 𝑝 ) }  | 
						
						
							| 69 | 
							
								39
							 | 
							csn | 
							⊢ { 𝑝 }  | 
						
						
							| 70 | 
							
								38 69
							 | 
							cun | 
							⊢ ( 𝑜  ∪  { 𝑝 } )  | 
						
						
							| 71 | 
							
								54 70
							 | 
							cima | 
							⊢ ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							cuni | 
							⊢ ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) )  | 
						
						
							| 73 | 
							
								15 72
							 | 
							cima | 
							⊢ ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) )  | 
						
						
							| 74 | 
							
								38 73
							 | 
							cun | 
							⊢ ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) )  | 
						
						
							| 75 | 
							
								17 55
							 | 
							cfv | 
							⊢ ( 𝑠 ‘ 𝑒 )  | 
						
						
							| 76 | 
							
								75
							 | 
							csn | 
							⊢ { ( 𝑠 ‘ 𝑒 ) }  | 
						
						
							| 77 | 
							
								18 76
							 | 
							cima | 
							⊢ ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } )  | 
						
						
							| 78 | 
							
								13 74 77
							 | 
							cixp | 
							⊢ X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } )  | 
						
						
							| 79 | 
							
								68 78
							 | 
							cxp | 
							⊢ ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  | 
						
						
							| 80 | 
							
								79 18
							 | 
							wss | 
							⊢ ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟  | 
						
						
							| 81 | 
							
								66 80
							 | 
							wi | 
							⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  →  ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟 )  | 
						
						
							| 82 | 
							
								81 44 47
							 | 
							wral | 
							⊢ ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  →  ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟 )  | 
						
						
							| 83 | 
							
								43 82
							 | 
							wi | 
							⊢ ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  →  ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟 ) )  | 
						
						
							| 84 | 
							
								83 36
							 | 
							wal | 
							⊢ ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  →  ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟 ) )  | 
						
						
							| 85 | 
							
								84 35
							 | 
							wal | 
							⊢ ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  →  ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟 ) )  | 
						
						
							| 86 | 
							
								85 34
							 | 
							wal | 
							⊢ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  →  ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟 ) )  | 
						
						
							| 87 | 
							
								24 33 86
							 | 
							w3a | 
							⊢ ( ∀ 𝑒  ∈  ran  ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) ,  ∅ 〉  ∧  ∀ 𝑒  ∈  ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 ,  ℎ ,  𝑒 〉 ) ,  ∅ 〉  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  →  ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟 ) ) )  | 
						
						
							| 88 | 
							
								87 12
							 | 
							cab | 
							⊢ { 𝑟  ∣  ( ∀ 𝑒  ∈  ran  ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) ,  ∅ 〉  ∧  ∀ 𝑒  ∈  ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 ,  ℎ ,  𝑒 〉 ) ,  ∅ 〉  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  →  ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟 ) ) ) }  | 
						
						
							| 89 | 
							
								88
							 | 
							cint | 
							⊢ ∩  { 𝑟  ∣  ( ∀ 𝑒  ∈  ran  ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) ,  ∅ 〉  ∧  ∀ 𝑒  ∈  ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 ,  ℎ ,  𝑒 〉 ) ,  ∅ 〉  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  →  ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟 ) ) ) }  | 
						
						
							| 90 | 
							
								3 8 7 11 89
							 | 
							cmpo | 
							⊢ ( 𝑑  ∈  𝒫  ( mDV ‘ 𝑡 ) ,  ℎ  ∈  𝒫  ( mEx ‘ 𝑡 )  ↦  ∩  { 𝑟  ∣  ( ∀ 𝑒  ∈  ran  ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) ,  ∅ 〉  ∧  ∀ 𝑒  ∈  ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 ,  ℎ ,  𝑒 〉 ) ,  ∅ 〉  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  →  ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟 ) ) ) } )  | 
						
						
							| 91 | 
							
								1 2 90
							 | 
							cmpt | 
							⊢ ( 𝑡  ∈  V  ↦  ( 𝑑  ∈  𝒫  ( mDV ‘ 𝑡 ) ,  ℎ  ∈  𝒫  ( mEx ‘ 𝑡 )  ↦  ∩  { 𝑟  ∣  ( ∀ 𝑒  ∈  ran  ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) ,  ∅ 〉  ∧  ∀ 𝑒  ∈  ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 ,  ℎ ,  𝑒 〉 ) ,  ∅ 〉  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  →  ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟 ) ) ) } ) )  | 
						
						
							| 92 | 
							
								0 91
							 | 
							wceq | 
							⊢ mTree  =  ( 𝑡  ∈  V  ↦  ( 𝑑  ∈  𝒫  ( mDV ‘ 𝑡 ) ,  ℎ  ∈  𝒫  ( mEx ‘ 𝑡 )  ↦  ∩  { 𝑟  ∣  ( ∀ 𝑒  ∈  ran  ( mVH ‘ 𝑡 ) 𝑒 𝑟 〈 ( m0St ‘ 𝑒 ) ,  ∅ 〉  ∧  ∀ 𝑒  ∈  ℎ 𝑒 𝑟 〈 ( ( mStRed ‘ 𝑡 ) ‘ 〈 𝑑 ,  ℎ ,  𝑒 〉 ) ,  ∅ 〉  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑡 )  →  ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 ) ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )  ⊆  𝑑 )  →  ( { ( 𝑠 ‘ 𝑝 ) }  ×  X 𝑒  ∈  ( 𝑜  ∪  ( ( mVH ‘ 𝑡 )  “  ∪  ( ( mVars ‘ 𝑡 )  “  ( 𝑜  ∪  { 𝑝 } ) ) ) ) ( 𝑟  “  { ( 𝑠 ‘ 𝑒 ) } ) )  ⊆  𝑟 ) ) ) } ) )  |