Metamath Proof Explorer


Definition df-mtree

Description: Define the set of proof trees. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mtree mTree = ( 𝑡 ∈ V ↦ ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ { 𝑟 ∣ ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 ⟨ ( m0St ‘ 𝑒 ) , ∅ ⟩ ∧ ∀ 𝑒 𝑒 𝑟 ⟨ ( ( mStRed ‘ 𝑡 ) ‘ ⟨ 𝑑 , , 𝑒 ⟩ ) , ∅ ⟩ ∧ ∀ 𝑚𝑜𝑝 ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 ) ) ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmtree mTree
1 vt 𝑡
2 cvv V
3 vd 𝑑
4 cmdv mDV
5 1 cv 𝑡
6 5 4 cfv ( mDV ‘ 𝑡 )
7 6 cpw 𝒫 ( mDV ‘ 𝑡 )
8 vh
9 cmex mEx
10 5 9 cfv ( mEx ‘ 𝑡 )
11 10 cpw 𝒫 ( mEx ‘ 𝑡 )
12 vr 𝑟
13 ve 𝑒
14 cmvh mVH
15 5 14 cfv ( mVH ‘ 𝑡 )
16 15 crn ran ( mVH ‘ 𝑡 )
17 13 cv 𝑒
18 12 cv 𝑟
19 cm0s m0St
20 17 19 cfv ( m0St ‘ 𝑒 )
21 c0
22 20 21 cop ⟨ ( m0St ‘ 𝑒 ) , ∅ ⟩
23 17 22 18 wbr 𝑒 𝑟 ⟨ ( m0St ‘ 𝑒 ) , ∅ ⟩
24 23 13 16 wral 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 ⟨ ( m0St ‘ 𝑒 ) , ∅ ⟩
25 8 cv
26 cmsr mStRed
27 5 26 cfv ( mStRed ‘ 𝑡 )
28 3 cv 𝑑
29 28 25 17 cotp 𝑑 , , 𝑒
30 29 27 cfv ( ( mStRed ‘ 𝑡 ) ‘ ⟨ 𝑑 , , 𝑒 ⟩ )
31 30 21 cop ⟨ ( ( mStRed ‘ 𝑡 ) ‘ ⟨ 𝑑 , , 𝑒 ⟩ ) , ∅ ⟩
32 17 31 18 wbr 𝑒 𝑟 ⟨ ( ( mStRed ‘ 𝑡 ) ‘ ⟨ 𝑑 , , 𝑒 ⟩ ) , ∅ ⟩
33 32 13 25 wral 𝑒 𝑒 𝑟 ⟨ ( ( mStRed ‘ 𝑡 ) ‘ ⟨ 𝑑 , , 𝑒 ⟩ ) , ∅ ⟩
34 vm 𝑚
35 vo 𝑜
36 vp 𝑝
37 34 cv 𝑚
38 35 cv 𝑜
39 36 cv 𝑝
40 37 38 39 cotp 𝑚 , 𝑜 , 𝑝
41 cmax mAx
42 5 41 cfv ( mAx ‘ 𝑡 )
43 40 42 wcel 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑡 )
44 vs 𝑠
45 cmsub mSubst
46 5 45 cfv ( mSubst ‘ 𝑡 )
47 46 crn ran ( mSubst ‘ 𝑡 )
48 vx 𝑥
49 vy 𝑦
50 48 cv 𝑥
51 49 cv 𝑦
52 50 51 37 wbr 𝑥 𝑚 𝑦
53 cmvrs mVars
54 5 53 cfv ( mVars ‘ 𝑡 )
55 44 cv 𝑠
56 50 15 cfv ( ( mVH ‘ 𝑡 ) ‘ 𝑥 )
57 56 55 cfv ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) )
58 57 54 cfv ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) )
59 51 15 cfv ( ( mVH ‘ 𝑡 ) ‘ 𝑦 )
60 59 55 cfv ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) )
61 60 54 cfv ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) )
62 58 61 cxp ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) )
63 62 28 wss ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑
64 52 63 wi ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 )
65 64 49 wal 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 )
66 65 48 wal 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 )
67 39 55 cfv ( 𝑠𝑝 )
68 67 csn { ( 𝑠𝑝 ) }
69 39 csn { 𝑝 }
70 38 69 cun ( 𝑜 ∪ { 𝑝 } )
71 54 70 cima ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) )
72 71 cuni ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) )
73 15 72 cima ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) )
74 38 73 cun ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) )
75 17 55 cfv ( 𝑠𝑒 )
76 75 csn { ( 𝑠𝑒 ) }
77 18 76 cima ( 𝑟 “ { ( 𝑠𝑒 ) } )
78 13 74 77 cixp X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } )
79 68 78 cxp ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) )
80 79 18 wss ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟
81 66 80 wi ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 )
82 81 44 47 wral 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 )
83 43 82 wi ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 ) )
84 83 36 wal 𝑝 ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 ) )
85 84 35 wal 𝑜𝑝 ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 ) )
86 85 34 wal 𝑚𝑜𝑝 ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 ) )
87 24 33 86 w3a ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 ⟨ ( m0St ‘ 𝑒 ) , ∅ ⟩ ∧ ∀ 𝑒 𝑒 𝑟 ⟨ ( ( mStRed ‘ 𝑡 ) ‘ ⟨ 𝑑 , , 𝑒 ⟩ ) , ∅ ⟩ ∧ ∀ 𝑚𝑜𝑝 ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 ) ) )
88 87 12 cab { 𝑟 ∣ ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 ⟨ ( m0St ‘ 𝑒 ) , ∅ ⟩ ∧ ∀ 𝑒 𝑒 𝑟 ⟨ ( ( mStRed ‘ 𝑡 ) ‘ ⟨ 𝑑 , , 𝑒 ⟩ ) , ∅ ⟩ ∧ ∀ 𝑚𝑜𝑝 ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 ) ) ) }
89 88 cint { 𝑟 ∣ ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 ⟨ ( m0St ‘ 𝑒 ) , ∅ ⟩ ∧ ∀ 𝑒 𝑒 𝑟 ⟨ ( ( mStRed ‘ 𝑡 ) ‘ ⟨ 𝑑 , , 𝑒 ⟩ ) , ∅ ⟩ ∧ ∀ 𝑚𝑜𝑝 ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 ) ) ) }
90 3 8 7 11 89 cmpo ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ { 𝑟 ∣ ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 ⟨ ( m0St ‘ 𝑒 ) , ∅ ⟩ ∧ ∀ 𝑒 𝑒 𝑟 ⟨ ( ( mStRed ‘ 𝑡 ) ‘ ⟨ 𝑑 , , 𝑒 ⟩ ) , ∅ ⟩ ∧ ∀ 𝑚𝑜𝑝 ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 ) ) ) } )
91 1 2 90 cmpt ( 𝑡 ∈ V ↦ ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ { 𝑟 ∣ ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 ⟨ ( m0St ‘ 𝑒 ) , ∅ ⟩ ∧ ∀ 𝑒 𝑒 𝑟 ⟨ ( ( mStRed ‘ 𝑡 ) ‘ ⟨ 𝑑 , , 𝑒 ⟩ ) , ∅ ⟩ ∧ ∀ 𝑚𝑜𝑝 ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 ) ) ) } ) )
92 0 91 wceq mTree = ( 𝑡 ∈ V ↦ ( 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) , ∈ 𝒫 ( mEx ‘ 𝑡 ) ↦ { 𝑟 ∣ ( ∀ 𝑒 ∈ ran ( mVH ‘ 𝑡 ) 𝑒 𝑟 ⟨ ( m0St ‘ 𝑒 ) , ∅ ⟩ ∧ ∀ 𝑒 𝑒 𝑟 ⟨ ( ( mStRed ‘ 𝑡 ) ‘ ⟨ 𝑑 , , 𝑒 ⟩ ) , ∅ ⟩ ∧ ∀ 𝑚𝑜𝑝 ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑡 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ( ∀ 𝑥𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑡 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑦 ) ) ) ) ⊆ 𝑑 ) → ( { ( 𝑠𝑝 ) } × X 𝑒 ∈ ( 𝑜 ∪ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) “ ( 𝑜 ∪ { 𝑝 } ) ) ) ) ( 𝑟 “ { ( 𝑠𝑒 ) } ) ) ⊆ 𝑟 ) ) ) } ) )