Step |
Hyp |
Ref |
Expression |
0 |
|
cmtree |
|- mTree |
1 |
|
vt |
|- t |
2 |
|
cvv |
|- _V |
3 |
|
vd |
|- d |
4 |
|
cmdv |
|- mDV |
5 |
1
|
cv |
|- t |
6 |
5 4
|
cfv |
|- ( mDV ` t ) |
7 |
6
|
cpw |
|- ~P ( mDV ` t ) |
8 |
|
vh |
|- h |
9 |
|
cmex |
|- mEx |
10 |
5 9
|
cfv |
|- ( mEx ` t ) |
11 |
10
|
cpw |
|- ~P ( mEx ` t ) |
12 |
|
vr |
|- r |
13 |
|
ve |
|- e |
14 |
|
cmvh |
|- mVH |
15 |
5 14
|
cfv |
|- ( mVH ` t ) |
16 |
15
|
crn |
|- ran ( mVH ` t ) |
17 |
13
|
cv |
|- e |
18 |
12
|
cv |
|- r |
19 |
|
cm0s |
|- m0St |
20 |
17 19
|
cfv |
|- ( m0St ` e ) |
21 |
|
c0 |
|- (/) |
22 |
20 21
|
cop |
|- <. ( m0St ` e ) , (/) >. |
23 |
17 22 18
|
wbr |
|- e r <. ( m0St ` e ) , (/) >. |
24 |
23 13 16
|
wral |
|- A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. |
25 |
8
|
cv |
|- h |
26 |
|
cmsr |
|- mStRed |
27 |
5 26
|
cfv |
|- ( mStRed ` t ) |
28 |
3
|
cv |
|- d |
29 |
28 25 17
|
cotp |
|- <. d , h , e >. |
30 |
29 27
|
cfv |
|- ( ( mStRed ` t ) ` <. d , h , e >. ) |
31 |
30 21
|
cop |
|- <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. |
32 |
17 31 18
|
wbr |
|- e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. |
33 |
32 13 25
|
wral |
|- A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. |
34 |
|
vm |
|- m |
35 |
|
vo |
|- o |
36 |
|
vp |
|- p |
37 |
34
|
cv |
|- m |
38 |
35
|
cv |
|- o |
39 |
36
|
cv |
|- p |
40 |
37 38 39
|
cotp |
|- <. m , o , p >. |
41 |
|
cmax |
|- mAx |
42 |
5 41
|
cfv |
|- ( mAx ` t ) |
43 |
40 42
|
wcel |
|- <. m , o , p >. e. ( mAx ` t ) |
44 |
|
vs |
|- s |
45 |
|
cmsub |
|- mSubst |
46 |
5 45
|
cfv |
|- ( mSubst ` t ) |
47 |
46
|
crn |
|- ran ( mSubst ` t ) |
48 |
|
vx |
|- x |
49 |
|
vy |
|- y |
50 |
48
|
cv |
|- x |
51 |
49
|
cv |
|- y |
52 |
50 51 37
|
wbr |
|- x m y |
53 |
|
cmvrs |
|- mVars |
54 |
5 53
|
cfv |
|- ( mVars ` t ) |
55 |
44
|
cv |
|- s |
56 |
50 15
|
cfv |
|- ( ( mVH ` t ) ` x ) |
57 |
56 55
|
cfv |
|- ( s ` ( ( mVH ` t ) ` x ) ) |
58 |
57 54
|
cfv |
|- ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) |
59 |
51 15
|
cfv |
|- ( ( mVH ` t ) ` y ) |
60 |
59 55
|
cfv |
|- ( s ` ( ( mVH ` t ) ` y ) ) |
61 |
60 54
|
cfv |
|- ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) |
62 |
58 61
|
cxp |
|- ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) |
63 |
62 28
|
wss |
|- ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d |
64 |
52 63
|
wi |
|- ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) |
65 |
64 49
|
wal |
|- A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) |
66 |
65 48
|
wal |
|- A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) |
67 |
39 55
|
cfv |
|- ( s ` p ) |
68 |
67
|
csn |
|- { ( s ` p ) } |
69 |
39
|
csn |
|- { p } |
70 |
38 69
|
cun |
|- ( o u. { p } ) |
71 |
54 70
|
cima |
|- ( ( mVars ` t ) " ( o u. { p } ) ) |
72 |
71
|
cuni |
|- U. ( ( mVars ` t ) " ( o u. { p } ) ) |
73 |
15 72
|
cima |
|- ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) |
74 |
38 73
|
cun |
|- ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) |
75 |
17 55
|
cfv |
|- ( s ` e ) |
76 |
75
|
csn |
|- { ( s ` e ) } |
77 |
18 76
|
cima |
|- ( r " { ( s ` e ) } ) |
78 |
13 74 77
|
cixp |
|- X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) |
79 |
68 78
|
cxp |
|- ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) |
80 |
79 18
|
wss |
|- ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r |
81 |
66 80
|
wi |
|- ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) |
82 |
81 44 47
|
wral |
|- A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) |
83 |
43 82
|
wi |
|- ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) |
84 |
83 36
|
wal |
|- A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) |
85 |
84 35
|
wal |
|- A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) |
86 |
85 34
|
wal |
|- A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) |
87 |
24 33 86
|
w3a |
|- ( A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. /\ A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) ) |
88 |
87 12
|
cab |
|- { r | ( A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. /\ A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) ) } |
89 |
88
|
cint |
|- |^| { r | ( A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. /\ A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) ) } |
90 |
3 8 7 11 89
|
cmpo |
|- ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { r | ( A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. /\ A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) ) } ) |
91 |
1 2 90
|
cmpt |
|- ( t e. _V |-> ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { r | ( A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. /\ A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) ) } ) ) |
92 |
0 91
|
wceq |
|- mTree = ( t e. _V |-> ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { r | ( A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. /\ A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) ) } ) ) |