| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cmtree | 
							 |-  mTree  | 
						
						
							| 1 | 
							
								
							 | 
							vt | 
							 |-  t  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							 |-  _V  | 
						
						
							| 3 | 
							
								
							 | 
							vd | 
							 |-  d  | 
						
						
							| 4 | 
							
								
							 | 
							cmdv | 
							 |-  mDV  | 
						
						
							| 5 | 
							
								1
							 | 
							cv | 
							 |-  t  | 
						
						
							| 6 | 
							
								5 4
							 | 
							cfv | 
							 |-  ( mDV ` t )  | 
						
						
							| 7 | 
							
								6
							 | 
							cpw | 
							 |-  ~P ( mDV ` t )  | 
						
						
							| 8 | 
							
								
							 | 
							vh | 
							 |-  h  | 
						
						
							| 9 | 
							
								
							 | 
							cmex | 
							 |-  mEx  | 
						
						
							| 10 | 
							
								5 9
							 | 
							cfv | 
							 |-  ( mEx ` t )  | 
						
						
							| 11 | 
							
								10
							 | 
							cpw | 
							 |-  ~P ( mEx ` t )  | 
						
						
							| 12 | 
							
								
							 | 
							vr | 
							 |-  r  | 
						
						
							| 13 | 
							
								
							 | 
							ve | 
							 |-  e  | 
						
						
							| 14 | 
							
								
							 | 
							cmvh | 
							 |-  mVH  | 
						
						
							| 15 | 
							
								5 14
							 | 
							cfv | 
							 |-  ( mVH ` t )  | 
						
						
							| 16 | 
							
								15
							 | 
							crn | 
							 |-  ran ( mVH ` t )  | 
						
						
							| 17 | 
							
								13
							 | 
							cv | 
							 |-  e  | 
						
						
							| 18 | 
							
								12
							 | 
							cv | 
							 |-  r  | 
						
						
							| 19 | 
							
								
							 | 
							cm0s | 
							 |-  m0St  | 
						
						
							| 20 | 
							
								17 19
							 | 
							cfv | 
							 |-  ( m0St ` e )  | 
						
						
							| 21 | 
							
								
							 | 
							c0 | 
							 |-  (/)  | 
						
						
							| 22 | 
							
								20 21
							 | 
							cop | 
							 |-  <. ( m0St ` e ) , (/) >.  | 
						
						
							| 23 | 
							
								17 22 18
							 | 
							wbr | 
							 |-  e r <. ( m0St ` e ) , (/) >.  | 
						
						
							| 24 | 
							
								23 13 16
							 | 
							wral | 
							 |-  A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >.  | 
						
						
							| 25 | 
							
								8
							 | 
							cv | 
							 |-  h  | 
						
						
							| 26 | 
							
								
							 | 
							cmsr | 
							 |-  mStRed  | 
						
						
							| 27 | 
							
								5 26
							 | 
							cfv | 
							 |-  ( mStRed ` t )  | 
						
						
							| 28 | 
							
								3
							 | 
							cv | 
							 |-  d  | 
						
						
							| 29 | 
							
								28 25 17
							 | 
							cotp | 
							 |-  <. d , h , e >.  | 
						
						
							| 30 | 
							
								29 27
							 | 
							cfv | 
							 |-  ( ( mStRed ` t ) ` <. d , h , e >. )  | 
						
						
							| 31 | 
							
								30 21
							 | 
							cop | 
							 |-  <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >.  | 
						
						
							| 32 | 
							
								17 31 18
							 | 
							wbr | 
							 |-  e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >.  | 
						
						
							| 33 | 
							
								32 13 25
							 | 
							wral | 
							 |-  A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >.  | 
						
						
							| 34 | 
							
								
							 | 
							vm | 
							 |-  m  | 
						
						
							| 35 | 
							
								
							 | 
							vo | 
							 |-  o  | 
						
						
							| 36 | 
							
								
							 | 
							vp | 
							 |-  p  | 
						
						
							| 37 | 
							
								34
							 | 
							cv | 
							 |-  m  | 
						
						
							| 38 | 
							
								35
							 | 
							cv | 
							 |-  o  | 
						
						
							| 39 | 
							
								36
							 | 
							cv | 
							 |-  p  | 
						
						
							| 40 | 
							
								37 38 39
							 | 
							cotp | 
							 |-  <. m , o , p >.  | 
						
						
							| 41 | 
							
								
							 | 
							cmax | 
							 |-  mAx  | 
						
						
							| 42 | 
							
								5 41
							 | 
							cfv | 
							 |-  ( mAx ` t )  | 
						
						
							| 43 | 
							
								40 42
							 | 
							wcel | 
							 |-  <. m , o , p >. e. ( mAx ` t )  | 
						
						
							| 44 | 
							
								
							 | 
							vs | 
							 |-  s  | 
						
						
							| 45 | 
							
								
							 | 
							cmsub | 
							 |-  mSubst  | 
						
						
							| 46 | 
							
								5 45
							 | 
							cfv | 
							 |-  ( mSubst ` t )  | 
						
						
							| 47 | 
							
								46
							 | 
							crn | 
							 |-  ran ( mSubst ` t )  | 
						
						
							| 48 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 49 | 
							
								
							 | 
							vy | 
							 |-  y  | 
						
						
							| 50 | 
							
								48
							 | 
							cv | 
							 |-  x  | 
						
						
							| 51 | 
							
								49
							 | 
							cv | 
							 |-  y  | 
						
						
							| 52 | 
							
								50 51 37
							 | 
							wbr | 
							 |-  x m y  | 
						
						
							| 53 | 
							
								
							 | 
							cmvrs | 
							 |-  mVars  | 
						
						
							| 54 | 
							
								5 53
							 | 
							cfv | 
							 |-  ( mVars ` t )  | 
						
						
							| 55 | 
							
								44
							 | 
							cv | 
							 |-  s  | 
						
						
							| 56 | 
							
								50 15
							 | 
							cfv | 
							 |-  ( ( mVH ` t ) ` x )  | 
						
						
							| 57 | 
							
								56 55
							 | 
							cfv | 
							 |-  ( s ` ( ( mVH ` t ) ` x ) )  | 
						
						
							| 58 | 
							
								57 54
							 | 
							cfv | 
							 |-  ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) )  | 
						
						
							| 59 | 
							
								51 15
							 | 
							cfv | 
							 |-  ( ( mVH ` t ) ` y )  | 
						
						
							| 60 | 
							
								59 55
							 | 
							cfv | 
							 |-  ( s ` ( ( mVH ` t ) ` y ) )  | 
						
						
							| 61 | 
							
								60 54
							 | 
							cfv | 
							 |-  ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) )  | 
						
						
							| 62 | 
							
								58 61
							 | 
							cxp | 
							 |-  ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) )  | 
						
						
							| 63 | 
							
								62 28
							 | 
							wss | 
							 |-  ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d  | 
						
						
							| 64 | 
							
								52 63
							 | 
							wi | 
							 |-  ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d )  | 
						
						
							| 65 | 
							
								64 49
							 | 
							wal | 
							 |-  A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d )  | 
						
						
							| 66 | 
							
								65 48
							 | 
							wal | 
							 |-  A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d )  | 
						
						
							| 67 | 
							
								39 55
							 | 
							cfv | 
							 |-  ( s ` p )  | 
						
						
							| 68 | 
							
								67
							 | 
							csn | 
							 |-  { ( s ` p ) } | 
						
						
							| 69 | 
							
								39
							 | 
							csn | 
							 |-  { p } | 
						
						
							| 70 | 
							
								38 69
							 | 
							cun | 
							 |-  ( o u. { p } ) | 
						
						
							| 71 | 
							
								54 70
							 | 
							cima | 
							 |-  ( ( mVars ` t ) " ( o u. { p } ) ) | 
						
						
							| 72 | 
							
								71
							 | 
							cuni | 
							 |-  U. ( ( mVars ` t ) " ( o u. { p } ) ) | 
						
						
							| 73 | 
							
								15 72
							 | 
							cima | 
							 |-  ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) | 
						
						
							| 74 | 
							
								38 73
							 | 
							cun | 
							 |-  ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) | 
						
						
							| 75 | 
							
								17 55
							 | 
							cfv | 
							 |-  ( s ` e )  | 
						
						
							| 76 | 
							
								75
							 | 
							csn | 
							 |-  { ( s ` e ) } | 
						
						
							| 77 | 
							
								18 76
							 | 
							cima | 
							 |-  ( r " { ( s ` e ) } ) | 
						
						
							| 78 | 
							
								13 74 77
							 | 
							cixp | 
							 |-  X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) | 
						
						
							| 79 | 
							
								68 78
							 | 
							cxp | 
							 |-  ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) | 
						
						
							| 80 | 
							
								79 18
							 | 
							wss | 
							 |-  ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r | 
						
						
							| 81 | 
							
								66 80
							 | 
							wi | 
							 |-  ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) | 
						
						
							| 82 | 
							
								81 44 47
							 | 
							wral | 
							 |-  A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) | 
						
						
							| 83 | 
							
								43 82
							 | 
							wi | 
							 |-  ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) | 
						
						
							| 84 | 
							
								83 36
							 | 
							wal | 
							 |-  A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) | 
						
						
							| 85 | 
							
								84 35
							 | 
							wal | 
							 |-  A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) | 
						
						
							| 86 | 
							
								85 34
							 | 
							wal | 
							 |-  A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) | 
						
						
							| 87 | 
							
								24 33 86
							 | 
							w3a | 
							 |-  ( A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. /\ A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) ) | 
						
						
							| 88 | 
							
								87 12
							 | 
							cab | 
							 |-  { r | ( A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. /\ A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) ) } | 
						
						
							| 89 | 
							
								88
							 | 
							cint | 
							 |-  |^| { r | ( A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. /\ A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) ) } | 
						
						
							| 90 | 
							
								3 8 7 11 89
							 | 
							cmpo | 
							 |-  ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { r | ( A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. /\ A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) ) } ) | 
						
						
							| 91 | 
							
								1 2 90
							 | 
							cmpt | 
							 |-  ( t e. _V |-> ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { r | ( A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. /\ A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) ) } ) ) | 
						
						
							| 92 | 
							
								0 91
							 | 
							wceq | 
							 |-  mTree = ( t e. _V |-> ( d e. ~P ( mDV ` t ) , h e. ~P ( mEx ` t ) |-> |^| { r | ( A. e e. ran ( mVH ` t ) e r <. ( m0St ` e ) , (/) >. /\ A. e e. h e r <. ( ( mStRed ` t ) ` <. d , h , e >. ) , (/) >. /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` t ) -> A. s e. ran ( mSubst ` t ) ( A. x A. y ( x m y -> ( ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` x ) ) ) X. ( ( mVars ` t ) ` ( s ` ( ( mVH ` t ) ` y ) ) ) ) C_ d ) -> ( { ( s ` p ) } X. X_ e e. ( o u. ( ( mVH ` t ) " U. ( ( mVars ` t ) " ( o u. { p } ) ) ) ) ( r " { ( s ` e ) } ) ) C_ r ) ) ) } ) ) |