Metamath Proof Explorer


Definition df-mst

Description: Define the function mapping syntax expressions to syntax trees. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mst
|- mST = ( t e. _V |-> ( ( (/) ( mTree ` t ) (/) ) |` ( ( mEx ` t ) |` ( mVT ` t ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmst
 |-  mST
1 vt
 |-  t
2 cvv
 |-  _V
3 c0
 |-  (/)
4 cmtree
 |-  mTree
5 1 cv
 |-  t
6 5 4 cfv
 |-  ( mTree ` t )
7 3 3 6 co
 |-  ( (/) ( mTree ` t ) (/) )
8 cmex
 |-  mEx
9 5 8 cfv
 |-  ( mEx ` t )
10 cmvt
 |-  mVT
11 5 10 cfv
 |-  ( mVT ` t )
12 9 11 cres
 |-  ( ( mEx ` t ) |` ( mVT ` t ) )
13 7 12 cres
 |-  ( ( (/) ( mTree ` t ) (/) ) |` ( ( mEx ` t ) |` ( mVT ` t ) ) )
14 1 2 13 cmpt
 |-  ( t e. _V |-> ( ( (/) ( mTree ` t ) (/) ) |` ( ( mEx ` t ) |` ( mVT ` t ) ) ) )
15 0 14 wceq
 |-  mST = ( t e. _V |-> ( ( (/) ( mTree ` t ) (/) ) |` ( ( mEx ` t ) |` ( mVT ` t ) ) ) )