Description: Define the function mapping syntax expressions to syntax trees. (Contributed by Mario Carneiro, 14-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mst | |- mST = ( t e. _V |-> ( ( (/) ( mTree ` t ) (/) ) |` ( ( mEx ` t ) |` ( mVT ` t ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmst | |- mST |
|
| 1 | vt | |- t |
|
| 2 | cvv | |- _V |
|
| 3 | c0 | |- (/) |
|
| 4 | cmtree | |- mTree |
|
| 5 | 1 | cv | |- t |
| 6 | 5 4 | cfv | |- ( mTree ` t ) |
| 7 | 3 3 6 | co | |- ( (/) ( mTree ` t ) (/) ) |
| 8 | cmex | |- mEx |
|
| 9 | 5 8 | cfv | |- ( mEx ` t ) |
| 10 | cmvt | |- mVT |
|
| 11 | 5 10 | cfv | |- ( mVT ` t ) |
| 12 | 9 11 | cres | |- ( ( mEx ` t ) |` ( mVT ` t ) ) |
| 13 | 7 12 | cres | |- ( ( (/) ( mTree ` t ) (/) ) |` ( ( mEx ` t ) |` ( mVT ` t ) ) ) |
| 14 | 1 2 13 | cmpt | |- ( t e. _V |-> ( ( (/) ( mTree ` t ) (/) ) |` ( ( mEx ` t ) |` ( mVT ` t ) ) ) ) |
| 15 | 0 14 | wceq | |- mST = ( t e. _V |-> ( ( (/) ( mTree ` t ) (/) ) |` ( ( mEx ` t ) |` ( mVT ` t ) ) ) ) |