Step |
Hyp |
Ref |
Expression |
0 |
|
cmst |
⊢ mST |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cvv |
⊢ V |
3 |
|
c0 |
⊢ ∅ |
4 |
|
cmtree |
⊢ mTree |
5 |
1
|
cv |
⊢ 𝑡 |
6 |
5 4
|
cfv |
⊢ ( mTree ‘ 𝑡 ) |
7 |
3 3 6
|
co |
⊢ ( ∅ ( mTree ‘ 𝑡 ) ∅ ) |
8 |
|
cmex |
⊢ mEx |
9 |
5 8
|
cfv |
⊢ ( mEx ‘ 𝑡 ) |
10 |
|
cmvt |
⊢ mVT |
11 |
5 10
|
cfv |
⊢ ( mVT ‘ 𝑡 ) |
12 |
9 11
|
cres |
⊢ ( ( mEx ‘ 𝑡 ) ↾ ( mVT ‘ 𝑡 ) ) |
13 |
7 12
|
cres |
⊢ ( ( ∅ ( mTree ‘ 𝑡 ) ∅ ) ↾ ( ( mEx ‘ 𝑡 ) ↾ ( mVT ‘ 𝑡 ) ) ) |
14 |
1 2 13
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( ( ∅ ( mTree ‘ 𝑡 ) ∅ ) ↾ ( ( mEx ‘ 𝑡 ) ↾ ( mVT ‘ 𝑡 ) ) ) ) |
15 |
0 14
|
wceq |
⊢ mST = ( 𝑡 ∈ V ↦ ( ( ∅ ( mTree ‘ 𝑡 ) ∅ ) ↾ ( ( mEx ‘ 𝑡 ) ↾ ( mVT ‘ 𝑡 ) ) ) ) |