Metamath Proof Explorer


Definition df-mst

Description: Define the function mapping syntax expressions to syntax trees. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mst mST = ( 𝑡 ∈ V ↦ ( ( ∅ ( mTree ‘ 𝑡 ) ∅ ) ↾ ( ( mEx ‘ 𝑡 ) ↾ ( mVT ‘ 𝑡 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmst mST
1 vt 𝑡
2 cvv V
3 c0
4 cmtree mTree
5 1 cv 𝑡
6 5 4 cfv ( mTree ‘ 𝑡 )
7 3 3 6 co ( ∅ ( mTree ‘ 𝑡 ) ∅ )
8 cmex mEx
9 5 8 cfv ( mEx ‘ 𝑡 )
10 cmvt mVT
11 5 10 cfv ( mVT ‘ 𝑡 )
12 9 11 cres ( ( mEx ‘ 𝑡 ) ↾ ( mVT ‘ 𝑡 ) )
13 7 12 cres ( ( ∅ ( mTree ‘ 𝑡 ) ∅ ) ↾ ( ( mEx ‘ 𝑡 ) ↾ ( mVT ‘ 𝑡 ) ) )
14 1 2 13 cmpt ( 𝑡 ∈ V ↦ ( ( ∅ ( mTree ‘ 𝑡 ) ∅ ) ↾ ( ( mEx ‘ 𝑡 ) ↾ ( mVT ‘ 𝑡 ) ) ) )
15 0 14 wceq mST = ( 𝑡 ∈ V ↦ ( ( ∅ ( mTree ‘ 𝑡 ) ∅ ) ↾ ( ( mEx ‘ 𝑡 ) ↾ ( mVT ‘ 𝑡 ) ) ) )