| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmsax |
⊢ mSAX |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vp |
⊢ 𝑝 |
| 4 |
|
cmsa |
⊢ mSA |
| 5 |
1
|
cv |
⊢ 𝑡 |
| 6 |
5 4
|
cfv |
⊢ ( mSA ‘ 𝑡 ) |
| 7 |
|
cmvh |
⊢ mVH |
| 8 |
5 7
|
cfv |
⊢ ( mVH ‘ 𝑡 ) |
| 9 |
|
cmvrs |
⊢ mVars |
| 10 |
5 9
|
cfv |
⊢ ( mVars ‘ 𝑡 ) |
| 11 |
3
|
cv |
⊢ 𝑝 |
| 12 |
11 10
|
cfv |
⊢ ( ( mVars ‘ 𝑡 ) ‘ 𝑝 ) |
| 13 |
8 12
|
cima |
⊢ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) ‘ 𝑝 ) ) |
| 14 |
3 6 13
|
cmpt |
⊢ ( 𝑝 ∈ ( mSA ‘ 𝑡 ) ↦ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) ‘ 𝑝 ) ) ) |
| 15 |
1 2 14
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( 𝑝 ∈ ( mSA ‘ 𝑡 ) ↦ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) ‘ 𝑝 ) ) ) ) |
| 16 |
0 15
|
wceq |
⊢ mSAX = ( 𝑡 ∈ V ↦ ( 𝑝 ∈ ( mSA ‘ 𝑡 ) ↦ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) ‘ 𝑝 ) ) ) ) |