Step |
Hyp |
Ref |
Expression |
0 |
|
cmsax |
⊢ mSAX |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cvv |
⊢ V |
3 |
|
vp |
⊢ 𝑝 |
4 |
|
cmsa |
⊢ mSA |
5 |
1
|
cv |
⊢ 𝑡 |
6 |
5 4
|
cfv |
⊢ ( mSA ‘ 𝑡 ) |
7 |
|
cmvh |
⊢ mVH |
8 |
5 7
|
cfv |
⊢ ( mVH ‘ 𝑡 ) |
9 |
|
cmvrs |
⊢ mVars |
10 |
5 9
|
cfv |
⊢ ( mVars ‘ 𝑡 ) |
11 |
3
|
cv |
⊢ 𝑝 |
12 |
11 10
|
cfv |
⊢ ( ( mVars ‘ 𝑡 ) ‘ 𝑝 ) |
13 |
8 12
|
cima |
⊢ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) ‘ 𝑝 ) ) |
14 |
3 6 13
|
cmpt |
⊢ ( 𝑝 ∈ ( mSA ‘ 𝑡 ) ↦ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) ‘ 𝑝 ) ) ) |
15 |
1 2 14
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( 𝑝 ∈ ( mSA ‘ 𝑡 ) ↦ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) ‘ 𝑝 ) ) ) ) |
16 |
0 15
|
wceq |
⊢ mSAX = ( 𝑡 ∈ V ↦ ( 𝑝 ∈ ( mSA ‘ 𝑡 ) ↦ ( ( mVH ‘ 𝑡 ) “ ( ( mVars ‘ 𝑡 ) ‘ 𝑝 ) ) ) ) |