Metamath Proof Explorer


Definition df-msax

Description: Define the indexing set for a syntax axiom's representation in a tree. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-msax
|- mSAX = ( t e. _V |-> ( p e. ( mSA ` t ) |-> ( ( mVH ` t ) " ( ( mVars ` t ) ` p ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmsax
 |-  mSAX
1 vt
 |-  t
2 cvv
 |-  _V
3 vp
 |-  p
4 cmsa
 |-  mSA
5 1 cv
 |-  t
6 5 4 cfv
 |-  ( mSA ` t )
7 cmvh
 |-  mVH
8 5 7 cfv
 |-  ( mVH ` t )
9 cmvrs
 |-  mVars
10 5 9 cfv
 |-  ( mVars ` t )
11 3 cv
 |-  p
12 11 10 cfv
 |-  ( ( mVars ` t ) ` p )
13 8 12 cima
 |-  ( ( mVH ` t ) " ( ( mVars ` t ) ` p ) )
14 3 6 13 cmpt
 |-  ( p e. ( mSA ` t ) |-> ( ( mVH ` t ) " ( ( mVars ` t ) ` p ) ) )
15 1 2 14 cmpt
 |-  ( t e. _V |-> ( p e. ( mSA ` t ) |-> ( ( mVH ` t ) " ( ( mVars ` t ) ` p ) ) ) )
16 0 15 wceq
 |-  mSAX = ( t e. _V |-> ( p e. ( mSA ` t ) |-> ( ( mVH ` t ) " ( ( mVars ` t ) ` p ) ) ) )