Description: Define the indexing set for a syntax axiom's representation in a tree. (Contributed by Mario Carneiro, 14-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | df-msax | |- mSAX = ( t e. _V |-> ( p e. ( mSA ` t ) |-> ( ( mVH ` t ) " ( ( mVars ` t ) ` p ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cmsax | |- mSAX |
|
1 | vt | |- t |
|
2 | cvv | |- _V |
|
3 | vp | |- p |
|
4 | cmsa | |- mSA |
|
5 | 1 | cv | |- t |
6 | 5 4 | cfv | |- ( mSA ` t ) |
7 | cmvh | |- mVH |
|
8 | 5 7 | cfv | |- ( mVH ` t ) |
9 | cmvrs | |- mVars |
|
10 | 5 9 | cfv | |- ( mVars ` t ) |
11 | 3 | cv | |- p |
12 | 11 10 | cfv | |- ( ( mVars ` t ) ` p ) |
13 | 8 12 | cima | |- ( ( mVH ` t ) " ( ( mVars ` t ) ` p ) ) |
14 | 3 6 13 | cmpt | |- ( p e. ( mSA ` t ) |-> ( ( mVH ` t ) " ( ( mVars ` t ) ` p ) ) ) |
15 | 1 2 14 | cmpt | |- ( t e. _V |-> ( p e. ( mSA ` t ) |-> ( ( mVH ` t ) " ( ( mVars ` t ) ` p ) ) ) ) |
16 | 0 15 | wceq | |- mSAX = ( t e. _V |-> ( p e. ( mSA ` t ) |-> ( ( mVH ` t ) " ( ( mVars ` t ) ` p ) ) ) ) |