Metamath Proof Explorer


Definition df-mst

Description: Define the function mapping syntax expressions to syntax trees. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mst mST = t V mTree t mEx t mVT t

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmst class mST
1 vt setvar t
2 cvv class V
3 c0 class
4 cmtree class mTree
5 1 cv setvar t
6 5 4 cfv class mTree t
7 3 3 6 co class mTree t
8 cmex class mEx
9 5 8 cfv class mEx t
10 cmvt class mVT
11 5 10 cfv class mVT t
12 9 11 cres class mEx t mVT t
13 7 12 cres class mTree t mEx t mVT t
14 1 2 13 cmpt class t V mTree t mEx t mVT t
15 0 14 wceq wff mST = t V mTree t mEx t mVT t