Metamath Proof Explorer


Definition df-mtree

Description: Define the set of proof trees. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mtree mTree = t V d 𝒫 mDV t , h 𝒫 mEx t r | e ran mVH t e r m0St e e h e r mStRed t d h e m o p m o p mAx t s ran mSubst t x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmtree class mTree
1 vt setvar t
2 cvv class V
3 vd setvar d
4 cmdv class mDV
5 1 cv setvar t
6 5 4 cfv class mDV t
7 6 cpw class 𝒫 mDV t
8 vh setvar h
9 cmex class mEx
10 5 9 cfv class mEx t
11 10 cpw class 𝒫 mEx t
12 vr setvar r
13 ve setvar e
14 cmvh class mVH
15 5 14 cfv class mVH t
16 15 crn class ran mVH t
17 13 cv setvar e
18 12 cv setvar r
19 cm0s class m0St
20 17 19 cfv class m0St e
21 c0 class
22 20 21 cop class m0St e
23 17 22 18 wbr wff e r m0St e
24 23 13 16 wral wff e ran mVH t e r m0St e
25 8 cv setvar h
26 cmsr class mStRed
27 5 26 cfv class mStRed t
28 3 cv setvar d
29 28 25 17 cotp class d h e
30 29 27 cfv class mStRed t d h e
31 30 21 cop class mStRed t d h e
32 17 31 18 wbr wff e r mStRed t d h e
33 32 13 25 wral wff e h e r mStRed t d h e
34 vm setvar m
35 vo setvar o
36 vp setvar p
37 34 cv setvar m
38 35 cv setvar o
39 36 cv setvar p
40 37 38 39 cotp class m o p
41 cmax class mAx
42 5 41 cfv class mAx t
43 40 42 wcel wff m o p mAx t
44 vs setvar s
45 cmsub class mSubst
46 5 45 cfv class mSubst t
47 46 crn class ran mSubst t
48 vx setvar x
49 vy setvar y
50 48 cv setvar x
51 49 cv setvar y
52 50 51 37 wbr wff x m y
53 cmvrs class mVars
54 5 53 cfv class mVars t
55 44 cv setvar s
56 50 15 cfv class mVH t x
57 56 55 cfv class s mVH t x
58 57 54 cfv class mVars t s mVH t x
59 51 15 cfv class mVH t y
60 59 55 cfv class s mVH t y
61 60 54 cfv class mVars t s mVH t y
62 58 61 cxp class mVars t s mVH t x × mVars t s mVH t y
63 62 28 wss wff mVars t s mVH t x × mVars t s mVH t y d
64 52 63 wi wff x m y mVars t s mVH t x × mVars t s mVH t y d
65 64 49 wal wff y x m y mVars t s mVH t x × mVars t s mVH t y d
66 65 48 wal wff x y x m y mVars t s mVH t x × mVars t s mVH t y d
67 39 55 cfv class s p
68 67 csn class s p
69 39 csn class p
70 38 69 cun class o p
71 54 70 cima class mVars t o p
72 71 cuni class mVars t o p
73 15 72 cima class mVH t mVars t o p
74 38 73 cun class o mVH t mVars t o p
75 17 55 cfv class s e
76 75 csn class s e
77 18 76 cima class r s e
78 13 74 77 cixp class e o mVH t mVars t o p r s e
79 68 78 cxp class s p × e o mVH t mVars t o p r s e
80 79 18 wss wff s p × e o mVH t mVars t o p r s e r
81 66 80 wi wff x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r
82 81 44 47 wral wff s ran mSubst t x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r
83 43 82 wi wff m o p mAx t s ran mSubst t x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r
84 83 36 wal wff p m o p mAx t s ran mSubst t x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r
85 84 35 wal wff o p m o p mAx t s ran mSubst t x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r
86 85 34 wal wff m o p m o p mAx t s ran mSubst t x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r
87 24 33 86 w3a wff e ran mVH t e r m0St e e h e r mStRed t d h e m o p m o p mAx t s ran mSubst t x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r
88 87 12 cab class r | e ran mVH t e r m0St e e h e r mStRed t d h e m o p m o p mAx t s ran mSubst t x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r
89 88 cint class r | e ran mVH t e r m0St e e h e r mStRed t d h e m o p m o p mAx t s ran mSubst t x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r
90 3 8 7 11 89 cmpo class d 𝒫 mDV t , h 𝒫 mEx t r | e ran mVH t e r m0St e e h e r mStRed t d h e m o p m o p mAx t s ran mSubst t x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r
91 1 2 90 cmpt class t V d 𝒫 mDV t , h 𝒫 mEx t r | e ran mVH t e r m0St e e h e r mStRed t d h e m o p m o p mAx t s ran mSubst t x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r
92 0 91 wceq wff mTree = t V d 𝒫 mDV t , h 𝒫 mEx t r | e ran mVH t e r m0St e e h e r mStRed t d h e m o p m o p mAx t s ran mSubst t x y x m y mVars t s mVH t x × mVars t s mVH t y d s p × e o mVH t mVars t o p r s e r