Metamath Proof Explorer


Definition df-mtree

Description: Define the set of proof trees. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mtree mTree=tVd𝒫mDVt,h𝒫mExtr|eranmVHterm0SteehermStRedtdhemopmopmAxtsranmSubsttxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmtree classmTree
1 vt setvart
2 cvv classV
3 vd setvard
4 cmdv classmDV
5 1 cv setvart
6 5 4 cfv classmDVt
7 6 cpw class𝒫mDVt
8 vh setvarh
9 cmex classmEx
10 5 9 cfv classmExt
11 10 cpw class𝒫mExt
12 vr setvarr
13 ve setvare
14 cmvh classmVH
15 5 14 cfv classmVHt
16 15 crn classranmVHt
17 13 cv setvare
18 12 cv setvarr
19 cm0s classm0St
20 17 19 cfv classm0Ste
21 c0 class
22 20 21 cop classm0Ste
23 17 22 18 wbr wfferm0Ste
24 23 13 16 wral wfferanmVHterm0Ste
25 8 cv setvarh
26 cmsr classmStRed
27 5 26 cfv classmStRedt
28 3 cv setvard
29 28 25 17 cotp classdhe
30 29 27 cfv classmStRedtdhe
31 30 21 cop classmStRedtdhe
32 17 31 18 wbr wffermStRedtdhe
33 32 13 25 wral wffehermStRedtdhe
34 vm setvarm
35 vo setvaro
36 vp setvarp
37 34 cv setvarm
38 35 cv setvaro
39 36 cv setvarp
40 37 38 39 cotp classmop
41 cmax classmAx
42 5 41 cfv classmAxt
43 40 42 wcel wffmopmAxt
44 vs setvars
45 cmsub classmSubst
46 5 45 cfv classmSubstt
47 46 crn classranmSubstt
48 vx setvarx
49 vy setvary
50 48 cv setvarx
51 49 cv setvary
52 50 51 37 wbr wffxmy
53 cmvrs classmVars
54 5 53 cfv classmVarst
55 44 cv setvars
56 50 15 cfv classmVHtx
57 56 55 cfv classsmVHtx
58 57 54 cfv classmVarstsmVHtx
59 51 15 cfv classmVHty
60 59 55 cfv classsmVHty
61 60 54 cfv classmVarstsmVHty
62 58 61 cxp classmVarstsmVHtx×mVarstsmVHty
63 62 28 wss wffmVarstsmVHtx×mVarstsmVHtyd
64 52 63 wi wffxmymVarstsmVHtx×mVarstsmVHtyd
65 64 49 wal wffyxmymVarstsmVHtx×mVarstsmVHtyd
66 65 48 wal wffxyxmymVarstsmVHtx×mVarstsmVHtyd
67 39 55 cfv classsp
68 67 csn classsp
69 39 csn classp
70 38 69 cun classop
71 54 70 cima classmVarstop
72 71 cuni classmVarstop
73 15 72 cima classmVHtmVarstop
74 38 73 cun classomVHtmVarstop
75 17 55 cfv classse
76 75 csn classse
77 18 76 cima classrse
78 13 74 77 cixp classeomVHtmVarstoprse
79 68 78 cxp classsp×eomVHtmVarstoprse
80 79 18 wss wffsp×eomVHtmVarstoprser
81 66 80 wi wffxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser
82 81 44 47 wral wffsranmSubsttxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser
83 43 82 wi wffmopmAxtsranmSubsttxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser
84 83 36 wal wffpmopmAxtsranmSubsttxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser
85 84 35 wal wffopmopmAxtsranmSubsttxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser
86 85 34 wal wffmopmopmAxtsranmSubsttxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser
87 24 33 86 w3a wfferanmVHterm0SteehermStRedtdhemopmopmAxtsranmSubsttxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser
88 87 12 cab classr|eranmVHterm0SteehermStRedtdhemopmopmAxtsranmSubsttxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser
89 88 cint classr|eranmVHterm0SteehermStRedtdhemopmopmAxtsranmSubsttxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser
90 3 8 7 11 89 cmpo classd𝒫mDVt,h𝒫mExtr|eranmVHterm0SteehermStRedtdhemopmopmAxtsranmSubsttxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser
91 1 2 90 cmpt classtVd𝒫mDVt,h𝒫mExtr|eranmVHterm0SteehermStRedtdhemopmopmAxtsranmSubsttxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser
92 0 91 wceq wffmTree=tVd𝒫mDVt,h𝒫mExtr|eranmVHterm0SteehermStRedtdhemopmopmAxtsranmSubsttxyxmymVarstsmVHtx×mVarstsmVHtydsp×eomVHtmVarstoprser