Metamath Proof Explorer


Definition df-msub

Description: Define a substitution of expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-msub mSubst=tVfmRExt𝑝𝑚mVRtemExt1stemRSubsttf2nde

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmsub classmSubst
1 vt setvart
2 cvv classV
3 vf setvarf
4 cmrex classmREx
5 1 cv setvart
6 5 4 cfv classmRExt
7 cpm class𝑝𝑚
8 cmvar classmVR
9 5 8 cfv classmVRt
10 6 9 7 co classmRExt𝑝𝑚mVRt
11 ve setvare
12 cmex classmEx
13 5 12 cfv classmExt
14 c1st class1st
15 11 cv setvare
16 15 14 cfv class1ste
17 cmrsub classmRSubst
18 5 17 cfv classmRSubstt
19 3 cv setvarf
20 19 18 cfv classmRSubsttf
21 c2nd class2nd
22 15 21 cfv class2nde
23 22 20 cfv classmRSubsttf2nde
24 16 23 cop class1stemRSubsttf2nde
25 11 13 24 cmpt classemExt1stemRSubsttf2nde
26 3 10 25 cmpt classfmRExt𝑝𝑚mVRtemExt1stemRSubsttf2nde
27 1 2 26 cmpt classtVfmRExt𝑝𝑚mVRtemExt1stemRSubsttf2nde
28 0 27 wceq wffmSubst=tVfmRExt𝑝𝑚mVRtemExt1stemRSubsttf2nde