| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmsub |
|- mSubst |
| 1 |
|
vt |
|- t |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vf |
|- f |
| 4 |
|
cmrex |
|- mREx |
| 5 |
1
|
cv |
|- t |
| 6 |
5 4
|
cfv |
|- ( mREx ` t ) |
| 7 |
|
cpm |
|- ^pm |
| 8 |
|
cmvar |
|- mVR |
| 9 |
5 8
|
cfv |
|- ( mVR ` t ) |
| 10 |
6 9 7
|
co |
|- ( ( mREx ` t ) ^pm ( mVR ` t ) ) |
| 11 |
|
ve |
|- e |
| 12 |
|
cmex |
|- mEx |
| 13 |
5 12
|
cfv |
|- ( mEx ` t ) |
| 14 |
|
c1st |
|- 1st |
| 15 |
11
|
cv |
|- e |
| 16 |
15 14
|
cfv |
|- ( 1st ` e ) |
| 17 |
|
cmrsub |
|- mRSubst |
| 18 |
5 17
|
cfv |
|- ( mRSubst ` t ) |
| 19 |
3
|
cv |
|- f |
| 20 |
19 18
|
cfv |
|- ( ( mRSubst ` t ) ` f ) |
| 21 |
|
c2nd |
|- 2nd |
| 22 |
15 21
|
cfv |
|- ( 2nd ` e ) |
| 23 |
22 20
|
cfv |
|- ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) |
| 24 |
16 23
|
cop |
|- <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. |
| 25 |
11 13 24
|
cmpt |
|- ( e e. ( mEx ` t ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. ) |
| 26 |
3 10 25
|
cmpt |
|- ( f e. ( ( mREx ` t ) ^pm ( mVR ` t ) ) |-> ( e e. ( mEx ` t ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. ) ) |
| 27 |
1 2 26
|
cmpt |
|- ( t e. _V |-> ( f e. ( ( mREx ` t ) ^pm ( mVR ` t ) ) |-> ( e e. ( mEx ` t ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. ) ) ) |
| 28 |
0 27
|
wceq |
|- mSubst = ( t e. _V |-> ( f e. ( ( mREx ` t ) ^pm ( mVR ` t ) ) |-> ( e e. ( mEx ` t ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. ) ) ) |