Step |
Hyp |
Ref |
Expression |
0 |
|
cmsub |
|- mSubst |
1 |
|
vt |
|- t |
2 |
|
cvv |
|- _V |
3 |
|
vf |
|- f |
4 |
|
cmrex |
|- mREx |
5 |
1
|
cv |
|- t |
6 |
5 4
|
cfv |
|- ( mREx ` t ) |
7 |
|
cpm |
|- ^pm |
8 |
|
cmvar |
|- mVR |
9 |
5 8
|
cfv |
|- ( mVR ` t ) |
10 |
6 9 7
|
co |
|- ( ( mREx ` t ) ^pm ( mVR ` t ) ) |
11 |
|
ve |
|- e |
12 |
|
cmex |
|- mEx |
13 |
5 12
|
cfv |
|- ( mEx ` t ) |
14 |
|
c1st |
|- 1st |
15 |
11
|
cv |
|- e |
16 |
15 14
|
cfv |
|- ( 1st ` e ) |
17 |
|
cmrsub |
|- mRSubst |
18 |
5 17
|
cfv |
|- ( mRSubst ` t ) |
19 |
3
|
cv |
|- f |
20 |
19 18
|
cfv |
|- ( ( mRSubst ` t ) ` f ) |
21 |
|
c2nd |
|- 2nd |
22 |
15 21
|
cfv |
|- ( 2nd ` e ) |
23 |
22 20
|
cfv |
|- ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) |
24 |
16 23
|
cop |
|- <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. |
25 |
11 13 24
|
cmpt |
|- ( e e. ( mEx ` t ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. ) |
26 |
3 10 25
|
cmpt |
|- ( f e. ( ( mREx ` t ) ^pm ( mVR ` t ) ) |-> ( e e. ( mEx ` t ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. ) ) |
27 |
1 2 26
|
cmpt |
|- ( t e. _V |-> ( f e. ( ( mREx ` t ) ^pm ( mVR ` t ) ) |-> ( e e. ( mEx ` t ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. ) ) ) |
28 |
0 27
|
wceq |
|- mSubst = ( t e. _V |-> ( f e. ( ( mREx ` t ) ^pm ( mVR ` t ) ) |-> ( e e. ( mEx ` t ) |-> <. ( 1st ` e ) , ( ( ( mRSubst ` t ) ` f ) ` ( 2nd ` e ) ) >. ) ) ) |