Metamath Proof Explorer


Definition df-mvh

Description: Define the mapping from variables to their variable hypothesis. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mvh
|- mVH = ( t e. _V |-> ( v e. ( mVR ` t ) |-> <. ( ( mType ` t ) ` v ) , <" v "> >. ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmvh
 |-  mVH
1 vt
 |-  t
2 cvv
 |-  _V
3 vv
 |-  v
4 cmvar
 |-  mVR
5 1 cv
 |-  t
6 5 4 cfv
 |-  ( mVR ` t )
7 cmty
 |-  mType
8 5 7 cfv
 |-  ( mType ` t )
9 3 cv
 |-  v
10 9 8 cfv
 |-  ( ( mType ` t ) ` v )
11 9 cs1
 |-  <" v ">
12 10 11 cop
 |-  <. ( ( mType ` t ) ` v ) , <" v "> >.
13 3 6 12 cmpt
 |-  ( v e. ( mVR ` t ) |-> <. ( ( mType ` t ) ` v ) , <" v "> >. )
14 1 2 13 cmpt
 |-  ( t e. _V |-> ( v e. ( mVR ` t ) |-> <. ( ( mType ` t ) ` v ) , <" v "> >. ) )
15 0 14 wceq
 |-  mVH = ( t e. _V |-> ( v e. ( mVR ` t ) |-> <. ( ( mType ` t ) ` v ) , <" v "> >. ) )