Description: Define the mapping from variables to their variable hypothesis. (Contributed by Mario Carneiro, 14-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mvh | |- mVH = ( t e. _V |-> ( v e. ( mVR ` t ) |-> <. ( ( mType ` t ) ` v ) , <" v "> >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cmvh | |- mVH |
|
| 1 | vt | |- t |
|
| 2 | cvv | |- _V |
|
| 3 | vv | |- v |
|
| 4 | cmvar | |- mVR |
|
| 5 | 1 | cv | |- t |
| 6 | 5 4 | cfv | |- ( mVR ` t ) |
| 7 | cmty | |- mType |
|
| 8 | 5 7 | cfv | |- ( mType ` t ) |
| 9 | 3 | cv | |- v |
| 10 | 9 8 | cfv | |- ( ( mType ` t ) ` v ) |
| 11 | 9 | cs1 | |- <" v "> |
| 12 | 10 11 | cop | |- <. ( ( mType ` t ) ` v ) , <" v "> >. |
| 13 | 3 6 12 | cmpt | |- ( v e. ( mVR ` t ) |-> <. ( ( mType ` t ) ` v ) , <" v "> >. ) |
| 14 | 1 2 13 | cmpt | |- ( t e. _V |-> ( v e. ( mVR ` t ) |-> <. ( ( mType ` t ) ` v ) , <" v "> >. ) ) |
| 15 | 0 14 | wceq | |- mVH = ( t e. _V |-> ( v e. ( mVR ` t ) |-> <. ( ( mType ` t ) ` v ) , <" v "> >. ) ) |