Step |
Hyp |
Ref |
Expression |
0 |
|
cmvh |
⊢ mVH |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cvv |
⊢ V |
3 |
|
vv |
⊢ 𝑣 |
4 |
|
cmvar |
⊢ mVR |
5 |
1
|
cv |
⊢ 𝑡 |
6 |
5 4
|
cfv |
⊢ ( mVR ‘ 𝑡 ) |
7 |
|
cmty |
⊢ mType |
8 |
5 7
|
cfv |
⊢ ( mType ‘ 𝑡 ) |
9 |
3
|
cv |
⊢ 𝑣 |
10 |
9 8
|
cfv |
⊢ ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) |
11 |
9
|
cs1 |
⊢ 〈“ 𝑣 ”〉 |
12 |
10 11
|
cop |
⊢ 〈 ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 〉 |
13 |
3 6 12
|
cmpt |
⊢ ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ 〈 ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 〉 ) |
14 |
1 2 13
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ 〈 ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 〉 ) ) |
15 |
0 14
|
wceq |
⊢ mVH = ( 𝑡 ∈ V ↦ ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ 〈 ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) , 〈“ 𝑣 ”〉 〉 ) ) |