Metamath Proof Explorer


Definition df-mvh

Description: Define the mapping from variables to their variable hypothesis. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mvh mVH = ( 𝑡 ∈ V ↦ ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ⟨ ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmvh mVH
1 vt 𝑡
2 cvv V
3 vv 𝑣
4 cmvar mVR
5 1 cv 𝑡
6 5 4 cfv ( mVR ‘ 𝑡 )
7 cmty mType
8 5 7 cfv ( mType ‘ 𝑡 )
9 3 cv 𝑣
10 9 8 cfv ( ( mType ‘ 𝑡 ) ‘ 𝑣 )
11 9 cs1 ⟨“ 𝑣 ”⟩
12 10 11 cop ⟨ ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩
13 3 6 12 cmpt ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ⟨ ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ )
14 1 2 13 cmpt ( 𝑡 ∈ V ↦ ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ⟨ ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ ) )
15 0 14 wceq mVH = ( 𝑡 ∈ V ↦ ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ⟨ ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) , ⟨“ 𝑣 ”⟩ ⟩ ) )