| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmpst |
⊢ mPreSt |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vd |
⊢ 𝑑 |
| 4 |
|
cmdv |
⊢ mDV |
| 5 |
1
|
cv |
⊢ 𝑡 |
| 6 |
5 4
|
cfv |
⊢ ( mDV ‘ 𝑡 ) |
| 7 |
6
|
cpw |
⊢ 𝒫 ( mDV ‘ 𝑡 ) |
| 8 |
3
|
cv |
⊢ 𝑑 |
| 9 |
8
|
ccnv |
⊢ ◡ 𝑑 |
| 10 |
9 8
|
wceq |
⊢ ◡ 𝑑 = 𝑑 |
| 11 |
10 3 7
|
crab |
⊢ { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ ◡ 𝑑 = 𝑑 } |
| 12 |
|
cmex |
⊢ mEx |
| 13 |
5 12
|
cfv |
⊢ ( mEx ‘ 𝑡 ) |
| 14 |
13
|
cpw |
⊢ 𝒫 ( mEx ‘ 𝑡 ) |
| 15 |
|
cfn |
⊢ Fin |
| 16 |
14 15
|
cin |
⊢ ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) |
| 17 |
11 16
|
cxp |
⊢ ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) |
| 18 |
17 13
|
cxp |
⊢ ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) × ( mEx ‘ 𝑡 ) ) |
| 19 |
1 2 18
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) × ( mEx ‘ 𝑡 ) ) ) |
| 20 |
0 19
|
wceq |
⊢ mPreSt = ( 𝑡 ∈ V ↦ ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ ◡ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) × ( mEx ‘ 𝑡 ) ) ) |