Metamath Proof Explorer


Definition df-mpst

Description: Define the set of all pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mpst mPreSt = ( 𝑡 ∈ V ↦ ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) × ( mEx ‘ 𝑡 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmpst mPreSt
1 vt 𝑡
2 cvv V
3 vd 𝑑
4 cmdv mDV
5 1 cv 𝑡
6 5 4 cfv ( mDV ‘ 𝑡 )
7 6 cpw 𝒫 ( mDV ‘ 𝑡 )
8 3 cv 𝑑
9 8 ccnv 𝑑
10 9 8 wceq 𝑑 = 𝑑
11 10 3 7 crab { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ 𝑑 = 𝑑 }
12 cmex mEx
13 5 12 cfv ( mEx ‘ 𝑡 )
14 13 cpw 𝒫 ( mEx ‘ 𝑡 )
15 cfn Fin
16 14 15 cin ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin )
17 11 16 cxp ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) )
18 17 13 cxp ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) × ( mEx ‘ 𝑡 ) )
19 1 2 18 cmpt ( 𝑡 ∈ V ↦ ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) × ( mEx ‘ 𝑡 ) ) )
20 0 19 wceq mPreSt = ( 𝑡 ∈ V ↦ ( ( { 𝑑 ∈ 𝒫 ( mDV ‘ 𝑡 ) ∣ 𝑑 = 𝑑 } × ( 𝒫 ( mEx ‘ 𝑡 ) ∩ Fin ) ) × ( mEx ‘ 𝑡 ) ) )