Step |
Hyp |
Ref |
Expression |
0 |
|
cmpst |
|- mPreSt |
1 |
|
vt |
|- t |
2 |
|
cvv |
|- _V |
3 |
|
vd |
|- d |
4 |
|
cmdv |
|- mDV |
5 |
1
|
cv |
|- t |
6 |
5 4
|
cfv |
|- ( mDV ` t ) |
7 |
6
|
cpw |
|- ~P ( mDV ` t ) |
8 |
3
|
cv |
|- d |
9 |
8
|
ccnv |
|- `' d |
10 |
9 8
|
wceq |
|- `' d = d |
11 |
10 3 7
|
crab |
|- { d e. ~P ( mDV ` t ) | `' d = d } |
12 |
|
cmex |
|- mEx |
13 |
5 12
|
cfv |
|- ( mEx ` t ) |
14 |
13
|
cpw |
|- ~P ( mEx ` t ) |
15 |
|
cfn |
|- Fin |
16 |
14 15
|
cin |
|- ( ~P ( mEx ` t ) i^i Fin ) |
17 |
11 16
|
cxp |
|- ( { d e. ~P ( mDV ` t ) | `' d = d } X. ( ~P ( mEx ` t ) i^i Fin ) ) |
18 |
17 13
|
cxp |
|- ( ( { d e. ~P ( mDV ` t ) | `' d = d } X. ( ~P ( mEx ` t ) i^i Fin ) ) X. ( mEx ` t ) ) |
19 |
1 2 18
|
cmpt |
|- ( t e. _V |-> ( ( { d e. ~P ( mDV ` t ) | `' d = d } X. ( ~P ( mEx ` t ) i^i Fin ) ) X. ( mEx ` t ) ) ) |
20 |
0 19
|
wceq |
|- mPreSt = ( t e. _V |-> ( ( { d e. ~P ( mDV ` t ) | `' d = d } X. ( ~P ( mEx ` t ) i^i Fin ) ) X. ( mEx ` t ) ) ) |