Metamath Proof Explorer


Definition df-mpst

Description: Define the set of all pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mpst
|- mPreSt = ( t e. _V |-> ( ( { d e. ~P ( mDV ` t ) | `' d = d } X. ( ~P ( mEx ` t ) i^i Fin ) ) X. ( mEx ` t ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmpst
 |-  mPreSt
1 vt
 |-  t
2 cvv
 |-  _V
3 vd
 |-  d
4 cmdv
 |-  mDV
5 1 cv
 |-  t
6 5 4 cfv
 |-  ( mDV ` t )
7 6 cpw
 |-  ~P ( mDV ` t )
8 3 cv
 |-  d
9 8 ccnv
 |-  `' d
10 9 8 wceq
 |-  `' d = d
11 10 3 7 crab
 |-  { d e. ~P ( mDV ` t ) | `' d = d }
12 cmex
 |-  mEx
13 5 12 cfv
 |-  ( mEx ` t )
14 13 cpw
 |-  ~P ( mEx ` t )
15 cfn
 |-  Fin
16 14 15 cin
 |-  ( ~P ( mEx ` t ) i^i Fin )
17 11 16 cxp
 |-  ( { d e. ~P ( mDV ` t ) | `' d = d } X. ( ~P ( mEx ` t ) i^i Fin ) )
18 17 13 cxp
 |-  ( ( { d e. ~P ( mDV ` t ) | `' d = d } X. ( ~P ( mEx ` t ) i^i Fin ) ) X. ( mEx ` t ) )
19 1 2 18 cmpt
 |-  ( t e. _V |-> ( ( { d e. ~P ( mDV ` t ) | `' d = d } X. ( ~P ( mEx ` t ) i^i Fin ) ) X. ( mEx ` t ) ) )
20 0 19 wceq
 |-  mPreSt = ( t e. _V |-> ( ( { d e. ~P ( mDV ` t ) | `' d = d } X. ( ~P ( mEx ` t ) i^i Fin ) ) X. ( mEx ` t ) ) )