| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmsr |
|- mStRed |
| 1 |
|
vt |
|- t |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vs |
|- s |
| 4 |
|
cmpst |
|- mPreSt |
| 5 |
1
|
cv |
|- t |
| 6 |
5 4
|
cfv |
|- ( mPreSt ` t ) |
| 7 |
|
c2nd |
|- 2nd |
| 8 |
|
c1st |
|- 1st |
| 9 |
3
|
cv |
|- s |
| 10 |
9 8
|
cfv |
|- ( 1st ` s ) |
| 11 |
10 7
|
cfv |
|- ( 2nd ` ( 1st ` s ) ) |
| 12 |
|
vh |
|- h |
| 13 |
9 7
|
cfv |
|- ( 2nd ` s ) |
| 14 |
|
va |
|- a |
| 15 |
10 8
|
cfv |
|- ( 1st ` ( 1st ` s ) ) |
| 16 |
|
cmvrs |
|- mVars |
| 17 |
5 16
|
cfv |
|- ( mVars ` t ) |
| 18 |
12
|
cv |
|- h |
| 19 |
14
|
cv |
|- a |
| 20 |
19
|
csn |
|- { a } |
| 21 |
18 20
|
cun |
|- ( h u. { a } ) |
| 22 |
17 21
|
cima |
|- ( ( mVars ` t ) " ( h u. { a } ) ) |
| 23 |
22
|
cuni |
|- U. ( ( mVars ` t ) " ( h u. { a } ) ) |
| 24 |
|
vz |
|- z |
| 25 |
24
|
cv |
|- z |
| 26 |
25 25
|
cxp |
|- ( z X. z ) |
| 27 |
24 23 26
|
csb |
|- [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) |
| 28 |
15 27
|
cin |
|- ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) |
| 29 |
28 18 19
|
cotp |
|- <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. |
| 30 |
14 13 29
|
csb |
|- [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. |
| 31 |
12 11 30
|
csb |
|- [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. |
| 32 |
3 6 31
|
cmpt |
|- ( s e. ( mPreSt ` t ) |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) |
| 33 |
1 2 32
|
cmpt |
|- ( t e. _V |-> ( s e. ( mPreSt ` t ) |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) ) |
| 34 |
0 33
|
wceq |
|- mStRed = ( t e. _V |-> ( s e. ( mPreSt ` t ) |-> [_ ( 2nd ` ( 1st ` s ) ) / h ]_ [_ ( 2nd ` s ) / a ]_ <. ( ( 1st ` ( 1st ` s ) ) i^i [_ U. ( ( mVars ` t ) " ( h u. { a } ) ) / z ]_ ( z X. z ) ) , h , a >. ) ) |