Step |
Hyp |
Ref |
Expression |
0 |
|
cmsub |
⊢ mSubst |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cvv |
⊢ V |
3 |
|
vf |
⊢ 𝑓 |
4 |
|
cmrex |
⊢ mREx |
5 |
1
|
cv |
⊢ 𝑡 |
6 |
5 4
|
cfv |
⊢ ( mREx ‘ 𝑡 ) |
7 |
|
cpm |
⊢ ↑pm |
8 |
|
cmvar |
⊢ mVR |
9 |
5 8
|
cfv |
⊢ ( mVR ‘ 𝑡 ) |
10 |
6 9 7
|
co |
⊢ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) |
11 |
|
ve |
⊢ 𝑒 |
12 |
|
cmex |
⊢ mEx |
13 |
5 12
|
cfv |
⊢ ( mEx ‘ 𝑡 ) |
14 |
|
c1st |
⊢ 1st |
15 |
11
|
cv |
⊢ 𝑒 |
16 |
15 14
|
cfv |
⊢ ( 1st ‘ 𝑒 ) |
17 |
|
cmrsub |
⊢ mRSubst |
18 |
5 17
|
cfv |
⊢ ( mRSubst ‘ 𝑡 ) |
19 |
3
|
cv |
⊢ 𝑓 |
20 |
19 18
|
cfv |
⊢ ( ( mRSubst ‘ 𝑡 ) ‘ 𝑓 ) |
21 |
|
c2nd |
⊢ 2nd |
22 |
15 21
|
cfv |
⊢ ( 2nd ‘ 𝑒 ) |
23 |
22 20
|
cfv |
⊢ ( ( ( mRSubst ‘ 𝑡 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) |
24 |
16 23
|
cop |
⊢ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑡 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 |
25 |
11 13 24
|
cmpt |
⊢ ( 𝑒 ∈ ( mEx ‘ 𝑡 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑡 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) |
26 |
3 10 25
|
cmpt |
⊢ ( 𝑓 ∈ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) ↦ ( 𝑒 ∈ ( mEx ‘ 𝑡 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑡 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) |
27 |
1 2 26
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( 𝑓 ∈ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) ↦ ( 𝑒 ∈ ( mEx ‘ 𝑡 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑡 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) ) |
28 |
0 27
|
wceq |
⊢ mSubst = ( 𝑡 ∈ V ↦ ( 𝑓 ∈ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) ↦ ( 𝑒 ∈ ( mEx ‘ 𝑡 ) ↦ 〈 ( 1st ‘ 𝑒 ) , ( ( ( mRSubst ‘ 𝑡 ) ‘ 𝑓 ) ‘ ( 2nd ‘ 𝑒 ) ) 〉 ) ) ) |