Metamath Proof Explorer


Definition df-mrsub

Description: Define a substitution of raw expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mrsub mRSubst=tVfmRExt𝑝𝑚mVRtemRExtfreeMndmCNtmVRtvmCNtmVRtifvdomffv⟨“v”⟩e

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmrsub classmRSubst
1 vt setvart
2 cvv classV
3 vf setvarf
4 cmrex classmREx
5 1 cv setvart
6 5 4 cfv classmRExt
7 cpm class𝑝𝑚
8 cmvar classmVR
9 5 8 cfv classmVRt
10 6 9 7 co classmRExt𝑝𝑚mVRt
11 ve setvare
12 cfrmd classfreeMnd
13 cmcn classmCN
14 5 13 cfv classmCNt
15 14 9 cun classmCNtmVRt
16 15 12 cfv classfreeMndmCNtmVRt
17 cgsu classΣ𝑔
18 vv setvarv
19 18 cv setvarv
20 3 cv setvarf
21 20 cdm classdomf
22 19 21 wcel wffvdomf
23 19 20 cfv classfv
24 19 cs1 class⟨“v”⟩
25 22 23 24 cif classifvdomffv⟨“v”⟩
26 18 15 25 cmpt classvmCNtmVRtifvdomffv⟨“v”⟩
27 11 cv setvare
28 26 27 ccom classvmCNtmVRtifvdomffv⟨“v”⟩e
29 16 28 17 co classfreeMndmCNtmVRtvmCNtmVRtifvdomffv⟨“v”⟩e
30 11 6 29 cmpt classemRExtfreeMndmCNtmVRtvmCNtmVRtifvdomffv⟨“v”⟩e
31 3 10 30 cmpt classfmRExt𝑝𝑚mVRtemRExtfreeMndmCNtmVRtvmCNtmVRtifvdomffv⟨“v”⟩e
32 1 2 31 cmpt classtVfmRExt𝑝𝑚mVRtemRExtfreeMndmCNtmVRtvmCNtmVRtifvdomffv⟨“v”⟩e
33 0 32 wceq wffmRSubst=tVfmRExt𝑝𝑚mVRtemRExtfreeMndmCNtmVRtvmCNtmVRtifvdomffv⟨“v”⟩e