| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmrsub |
⊢ mRSubst |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
|
cmrex |
⊢ mREx |
| 5 |
1
|
cv |
⊢ 𝑡 |
| 6 |
5 4
|
cfv |
⊢ ( mREx ‘ 𝑡 ) |
| 7 |
|
cpm |
⊢ ↑pm |
| 8 |
|
cmvar |
⊢ mVR |
| 9 |
5 8
|
cfv |
⊢ ( mVR ‘ 𝑡 ) |
| 10 |
6 9 7
|
co |
⊢ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) |
| 11 |
|
ve |
⊢ 𝑒 |
| 12 |
|
cfrmd |
⊢ freeMnd |
| 13 |
|
cmcn |
⊢ mCN |
| 14 |
5 13
|
cfv |
⊢ ( mCN ‘ 𝑡 ) |
| 15 |
14 9
|
cun |
⊢ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) |
| 16 |
15 12
|
cfv |
⊢ ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) |
| 17 |
|
cgsu |
⊢ Σg |
| 18 |
|
vv |
⊢ 𝑣 |
| 19 |
18
|
cv |
⊢ 𝑣 |
| 20 |
3
|
cv |
⊢ 𝑓 |
| 21 |
20
|
cdm |
⊢ dom 𝑓 |
| 22 |
19 21
|
wcel |
⊢ 𝑣 ∈ dom 𝑓 |
| 23 |
19 20
|
cfv |
⊢ ( 𝑓 ‘ 𝑣 ) |
| 24 |
19
|
cs1 |
⊢ 〈“ 𝑣 ”〉 |
| 25 |
22 23 24
|
cif |
⊢ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) |
| 26 |
18 15 25
|
cmpt |
⊢ ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) |
| 27 |
11
|
cv |
⊢ 𝑒 |
| 28 |
26 27
|
ccom |
⊢ ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) |
| 29 |
16 28 17
|
co |
⊢ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) |
| 30 |
11 6 29
|
cmpt |
⊢ ( 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) |
| 31 |
3 10 30
|
cmpt |
⊢ ( 𝑓 ∈ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) ↦ ( 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) |
| 32 |
1 2 31
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( 𝑓 ∈ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) ↦ ( 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |
| 33 |
0 32
|
wceq |
⊢ mRSubst = ( 𝑡 ∈ V ↦ ( 𝑓 ∈ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) ↦ ( 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |