Step |
Hyp |
Ref |
Expression |
0 |
|
cmrsub |
⊢ mRSubst |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cvv |
⊢ V |
3 |
|
vf |
⊢ 𝑓 |
4 |
|
cmrex |
⊢ mREx |
5 |
1
|
cv |
⊢ 𝑡 |
6 |
5 4
|
cfv |
⊢ ( mREx ‘ 𝑡 ) |
7 |
|
cpm |
⊢ ↑pm |
8 |
|
cmvar |
⊢ mVR |
9 |
5 8
|
cfv |
⊢ ( mVR ‘ 𝑡 ) |
10 |
6 9 7
|
co |
⊢ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) |
11 |
|
ve |
⊢ 𝑒 |
12 |
|
cfrmd |
⊢ freeMnd |
13 |
|
cmcn |
⊢ mCN |
14 |
5 13
|
cfv |
⊢ ( mCN ‘ 𝑡 ) |
15 |
14 9
|
cun |
⊢ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) |
16 |
15 12
|
cfv |
⊢ ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) |
17 |
|
cgsu |
⊢ Σg |
18 |
|
vv |
⊢ 𝑣 |
19 |
18
|
cv |
⊢ 𝑣 |
20 |
3
|
cv |
⊢ 𝑓 |
21 |
20
|
cdm |
⊢ dom 𝑓 |
22 |
19 21
|
wcel |
⊢ 𝑣 ∈ dom 𝑓 |
23 |
19 20
|
cfv |
⊢ ( 𝑓 ‘ 𝑣 ) |
24 |
19
|
cs1 |
⊢ 〈“ 𝑣 ”〉 |
25 |
22 23 24
|
cif |
⊢ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) |
26 |
18 15 25
|
cmpt |
⊢ ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) |
27 |
11
|
cv |
⊢ 𝑒 |
28 |
26 27
|
ccom |
⊢ ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) |
29 |
16 28 17
|
co |
⊢ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) |
30 |
11 6 29
|
cmpt |
⊢ ( 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) |
31 |
3 10 30
|
cmpt |
⊢ ( 𝑓 ∈ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) ↦ ( 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) |
32 |
1 2 31
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ ( 𝑓 ∈ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) ↦ ( 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |
33 |
0 32
|
wceq |
⊢ mRSubst = ( 𝑡 ∈ V ↦ ( 𝑓 ∈ ( ( mREx ‘ 𝑡 ) ↑pm ( mVR ‘ 𝑡 ) ) ↦ ( 𝑒 ∈ ( mREx ‘ 𝑡 ) ↦ ( ( freeMnd ‘ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ) Σg ( ( 𝑣 ∈ ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) ↦ if ( 𝑣 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑣 ) , 〈“ 𝑣 ”〉 ) ) ∘ 𝑒 ) ) ) ) ) |