| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmrsub |
|- mRSubst |
| 1 |
|
vt |
|- t |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vf |
|- f |
| 4 |
|
cmrex |
|- mREx |
| 5 |
1
|
cv |
|- t |
| 6 |
5 4
|
cfv |
|- ( mREx ` t ) |
| 7 |
|
cpm |
|- ^pm |
| 8 |
|
cmvar |
|- mVR |
| 9 |
5 8
|
cfv |
|- ( mVR ` t ) |
| 10 |
6 9 7
|
co |
|- ( ( mREx ` t ) ^pm ( mVR ` t ) ) |
| 11 |
|
ve |
|- e |
| 12 |
|
cfrmd |
|- freeMnd |
| 13 |
|
cmcn |
|- mCN |
| 14 |
5 13
|
cfv |
|- ( mCN ` t ) |
| 15 |
14 9
|
cun |
|- ( ( mCN ` t ) u. ( mVR ` t ) ) |
| 16 |
15 12
|
cfv |
|- ( freeMnd ` ( ( mCN ` t ) u. ( mVR ` t ) ) ) |
| 17 |
|
cgsu |
|- gsum |
| 18 |
|
vv |
|- v |
| 19 |
18
|
cv |
|- v |
| 20 |
3
|
cv |
|- f |
| 21 |
20
|
cdm |
|- dom f |
| 22 |
19 21
|
wcel |
|- v e. dom f |
| 23 |
19 20
|
cfv |
|- ( f ` v ) |
| 24 |
19
|
cs1 |
|- <" v "> |
| 25 |
22 23 24
|
cif |
|- if ( v e. dom f , ( f ` v ) , <" v "> ) |
| 26 |
18 15 25
|
cmpt |
|- ( v e. ( ( mCN ` t ) u. ( mVR ` t ) ) |-> if ( v e. dom f , ( f ` v ) , <" v "> ) ) |
| 27 |
11
|
cv |
|- e |
| 28 |
26 27
|
ccom |
|- ( ( v e. ( ( mCN ` t ) u. ( mVR ` t ) ) |-> if ( v e. dom f , ( f ` v ) , <" v "> ) ) o. e ) |
| 29 |
16 28 17
|
co |
|- ( ( freeMnd ` ( ( mCN ` t ) u. ( mVR ` t ) ) ) gsum ( ( v e. ( ( mCN ` t ) u. ( mVR ` t ) ) |-> if ( v e. dom f , ( f ` v ) , <" v "> ) ) o. e ) ) |
| 30 |
11 6 29
|
cmpt |
|- ( e e. ( mREx ` t ) |-> ( ( freeMnd ` ( ( mCN ` t ) u. ( mVR ` t ) ) ) gsum ( ( v e. ( ( mCN ` t ) u. ( mVR ` t ) ) |-> if ( v e. dom f , ( f ` v ) , <" v "> ) ) o. e ) ) ) |
| 31 |
3 10 30
|
cmpt |
|- ( f e. ( ( mREx ` t ) ^pm ( mVR ` t ) ) |-> ( e e. ( mREx ` t ) |-> ( ( freeMnd ` ( ( mCN ` t ) u. ( mVR ` t ) ) ) gsum ( ( v e. ( ( mCN ` t ) u. ( mVR ` t ) ) |-> if ( v e. dom f , ( f ` v ) , <" v "> ) ) o. e ) ) ) ) |
| 32 |
1 2 31
|
cmpt |
|- ( t e. _V |-> ( f e. ( ( mREx ` t ) ^pm ( mVR ` t ) ) |-> ( e e. ( mREx ` t ) |-> ( ( freeMnd ` ( ( mCN ` t ) u. ( mVR ` t ) ) ) gsum ( ( v e. ( ( mCN ` t ) u. ( mVR ` t ) ) |-> if ( v e. dom f , ( f ` v ) , <" v "> ) ) o. e ) ) ) ) ) |
| 33 |
0 32
|
wceq |
|- mRSubst = ( t e. _V |-> ( f e. ( ( mREx ` t ) ^pm ( mVR ` t ) ) |-> ( e e. ( mREx ` t ) |-> ( ( freeMnd ` ( ( mCN ` t ) u. ( mVR ` t ) ) ) gsum ( ( v e. ( ( mCN ` t ) u. ( mVR ` t ) ) |-> if ( v e. dom f , ( f ` v ) , <" v "> ) ) o. e ) ) ) ) ) |