Metamath Proof Explorer


Definition df-msr

Description: Define the reduct of a pre-statement. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-msr mStRed=tVsmPreStt2nd1sts/h2nds/a1st1stsmVarstha/zz×zha

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmsr classmStRed
1 vt setvart
2 cvv classV
3 vs setvars
4 cmpst classmPreSt
5 1 cv setvart
6 5 4 cfv classmPreStt
7 c2nd class2nd
8 c1st class1st
9 3 cv setvars
10 9 8 cfv class1sts
11 10 7 cfv class2nd1sts
12 vh setvarh
13 9 7 cfv class2nds
14 va setvara
15 10 8 cfv class1st1sts
16 cmvrs classmVars
17 5 16 cfv classmVarst
18 12 cv setvarh
19 14 cv setvara
20 19 csn classa
21 18 20 cun classha
22 17 21 cima classmVarstha
23 22 cuni classmVarstha
24 vz setvarz
25 24 cv setvarz
26 25 25 cxp classz×z
27 24 23 26 csb classmVarstha/zz×z
28 15 27 cin class1st1stsmVarstha/zz×z
29 28 18 19 cotp class1st1stsmVarstha/zz×zha
30 14 13 29 csb class2nds/a1st1stsmVarstha/zz×zha
31 12 11 30 csb class2nd1sts/h2nds/a1st1stsmVarstha/zz×zha
32 3 6 31 cmpt classsmPreStt2nd1sts/h2nds/a1st1stsmVarstha/zz×zha
33 1 2 32 cmpt classtVsmPreStt2nd1sts/h2nds/a1st1stsmVarstha/zz×zha
34 0 33 wceq wffmStRed=tVsmPreStt2nd1sts/h2nds/a1st1stsmVarstha/zz×zha