Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Metamath formal systems
df-mpst
Next ⟩
df-msr
Metamath Proof Explorer
Ascii
Unicode
Definition
df-mpst
Description:
Define the set of all pre-statements.
(Contributed by
Mario Carneiro
, 14-Jul-2016)
Ref
Expression
Assertion
df-mpst
⊢
mPreSt
=
t
∈
V
⟼
d
∈
𝒫
mDV
⁡
t
|
d
-1
=
d
×
𝒫
mEx
⁡
t
∩
Fin
×
mEx
⁡
t
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cmpst
class
mPreSt
1
vt
setvar
t
2
cvv
class
V
3
vd
setvar
d
4
cmdv
class
mDV
5
1
cv
setvar
t
6
5
4
cfv
class
mDV
⁡
t
7
6
cpw
class
𝒫
mDV
⁡
t
8
3
cv
setvar
d
9
8
ccnv
class
d
-1
10
9
8
wceq
wff
d
-1
=
d
11
10
3
7
crab
class
d
∈
𝒫
mDV
⁡
t
|
d
-1
=
d
12
cmex
class
mEx
13
5
12
cfv
class
mEx
⁡
t
14
13
cpw
class
𝒫
mEx
⁡
t
15
cfn
class
Fin
16
14
15
cin
class
𝒫
mEx
⁡
t
∩
Fin
17
11
16
cxp
class
d
∈
𝒫
mDV
⁡
t
|
d
-1
=
d
×
𝒫
mEx
⁡
t
∩
Fin
18
17
13
cxp
class
d
∈
𝒫
mDV
⁡
t
|
d
-1
=
d
×
𝒫
mEx
⁡
t
∩
Fin
×
mEx
⁡
t
19
1
2
18
cmpt
class
t
∈
V
⟼
d
∈
𝒫
mDV
⁡
t
|
d
-1
=
d
×
𝒫
mEx
⁡
t
∩
Fin
×
mEx
⁡
t
20
0
19
wceq
wff
mPreSt
=
t
∈
V
⟼
d
∈
𝒫
mDV
⁡
t
|
d
-1
=
d
×
𝒫
mEx
⁡
t
∩
Fin
×
mEx
⁡
t